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7. THE LEBESGUE INTEGRAL

No one will dispute the central role of Lebesgue integration in analysis,
and this beautiful theory belongs in the repertoire of every aspiring
mathematician. For our purposes, however, we shall need only the few
facts listed at the end of the section and enough discussion to give them
meaning. We can safely omit proofs because the methods involved are not
used elsewhere in the book.

The Lebesgue integral may be viewed as an extension of the Riemann
integral in the sense that every Riemann-integrable function is also Le-
besgue integrable to the same value and that there exist some functions,
such as the Dirichlet function described below, that fail to be Riemann
integrable but are Lebesgue integrable. The kind of function that is
Lebesgue integrable but not Riemann integrable rarely, if ever, occurs in
practice. Thus it is not for computational reasons that the Lebesgue
integral is so important. What the Lebesgue integral does is to give
structural unity to analysis. From a philosophical point of view, the
relationship of Lebesgue-integrable functions to Riemann-integrable func-
tions is similar to that of real numbers to rational numbers. Concrete
calculations require only rational numbers, but mathematics needs irra-
tional numbers. The totality of real numbers (rational plus irrational) has
an inner consistency absent from the class of rational numbers alone. It is
the completeness (see Chapter 4) of the real number system which makes it
powerful. Principally this means that when we apply limiting processes in
the class of real numbers we remain within the class. Similarly we shall
find that for most concrete calculations the notion of Riemann integral is
adequate, but theorems involving passage to the limit are more easily
formulated and proved within the class of Lebesgue-integrable functions.

The difference between these two concepts of integration is illustrated
by the following analogy, which, though not strictly apt, has some anec-
dotal value. A shopkeeper can determine a day’s total receipts either by
adding the individual transactions (Riemann) or by sorting bills and coins
according to their denomination and then adding the respective contribu-
tions (Lebesgue). Obviously the second approach is more efficient!

Consider now a nonnegative real-valued function f(x) defined on the
interval 0<x g I. In the Riemann scheme one partitions the x interval,
then forms the sum 37 _, F €N x, — x,_,) for arbitrary & in[x, 1, x,), and
finally passes to the limit as n—sco and the length of the largest subdivision
tends to 0. The principal difficulty is proving that the limit exists indepen-
dently of the choice of & In the Lebesgue approach it is the y axis that is
partitioned (see Figure 7.1). Let E, be the set of values of x such that
Yi—1 S f(x)<y; in the favorable case shown in the figure, E, is the union of
a finite number of disjoint intervals. We then form the sum Z7_ n,m(E),
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where 7, is chosen arbitrarily in [y, 1Yl and m(E) is the measure of B
that is, the sum of the lengths of the disjoint intervals that make up £, As

existence of the limit of the sum. Indeed, the lower sum >* WYiom(E) is
monotonically increasing with » and bounded above, and so must con-
verge. The upper sum Zi.v;m(E,) differs from the lower sum by less than
max(y, — Yi-)Zi2 m(E); since 25 m(E)=1 and max(y;—y,_,) tends to
0, the upper sum must also converge to the same value as the lower sum.
This common value js the Lebesgue integral

of total length less than &. The set has measure 0 if such a covering can be
found for each >0, A function f(x) is measurabie if, for any >0, we can
convert it into a continuous function by changing its values on a set of
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measure less than e. Note that f is surely measurable if it can be converted
to a continuous function by altering its values on a set of measure 0.

Example 1. Suppose f(x) is piecewise continuous in [0,1] with simple
jumps at x,,...,x,. In each of the intervals [xi—e/2n,x,4+e/2n] we can
replace f(x) by a straight line joining the points (x;—e/2n,f(x;,—e/2n))
and (x;+¢/2n,f(x,+¢/2n)). The resulting function is continuous, and we
have altered the values of the original function over a set of measure

n(e/n)=c¢.

Example 2. The Dirichlet function f(x) has the value | when x is rational
and 0 when x is irrational. If we change the value of f from 1 to 0 on the
set of rationals, we obtain the continuous function that vanishes identically
on [0,1]. We claim the set of rationals has measure 0. Since the rational
numbers form a countable set, they can be placed into 1-1 correspondence
with the positive integers, for instance by ordering them so that they have
increasing denominators:
0.L4 4340000 0k

For each £ >0, we enclose the kth rational number in this list in an interval
of length e/2*. The total length of the intervals enclosing all rationals is
then

£

1 2%

Mz

=E.
k

il

Thus for each €>0 we can enclose the rational numbers in a countably
infinite set of intervals whose total length is e. Since this can be done for
each >0, we conclude that the set of rationals has measure 0.

Therefore the Dirichlet funcrion is measurable.

Example 3. Let f(x)=x"%0<x< 1, where a>0; we define £(0) to be 0,
but any other value would do as well. Then Jf{x) is measurable, since it can
be converted into a continuous function by replacing it on 0 <x <e by the
constant function & "%, Of course there are many other ways in which such
a conversion can be accomplished.

The notion of the Lebesgue integral of a nonnegative measurable func-
tion f(x) can now be introduced. Let {e,} be a sequence of positive
numbers such that ¢,—0. For each n construct a nonnegative continuous
function f,(x) which differs from f(x) only on a set of measure less than &
Now f,(x) is certainly Riemann integrable on 0 <x < 1. Let us suppose that
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so that their integrals form a convergent sequence. Since there are many
possible choices for the sequence {f}, the limit of the sequence of
integrals is not uniquely defined by f (x) but can depend on the choice of
the sequence (£ ). The greatest lower bound of the possible limits is
defined as the Lebesgue integral of JOx):

j(;lf(x)a’x.

It is easily shown that every Riemann-integrable function is Lebesgue
integrable to the same value. If f(x) has an improper Riemann integral, as
in Example 3 with 0<q< 1, then f(x) is Lebesgue integrable and the
values of the integrals again coincide; if we take a > | in Example 3, then
neither the improper Riemann integral nor the Lebesgue integral exists,
Thus the Lebesgue approach does not miraculously reduce infinite areas to
finite values. However, the Dirichlet function of Example 2 is Lebesgue
integrable to the value 0 but is not Riemann integrable (for any partition
each subdivision contains both rational and irrational numbers, so that the
Riemann sum can be made either 0 or | by choice of £).

If f(x) can take both positive and negative values, we write f (x)=f,(x)
~/_(x), where f, and S are both nonnegative functions defined by

. xXEE, _]-f xe€E_,
r.o={ 1 {O,

0, elsewhere, elsewhere,

where £, and E_ are the seéts on the x axis where f is positive and
negative, respectively. It is then possible to define

fo'fatx=j;‘f+ dx —-j;f_ dx.

The Lebesgue integral can also be defined for arbitrary finite intervals or
for infinite intervals. The integral has the usual linearity property

S Tof )+ Be(x)) d=a [fyax+p [ e(x)as.

We have already remarked that the importance of the Lebesgue integral
lies in the relative Impunity with which we can use limiting processes in
connection with Lebesgue integration. One of the most important theorems
is the following,
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Lebesgue Dominated Convergence Theorem. Let {s,(x)} be a sequence
of integrable functions over [a, 5], which approaches a limit s(x) pointwise
except possibly over a set of measure 0. If there exists an integrable
function f(x) such that, for all sufficiently large n, |s,(x)| < f(x), then 5(x)
is integrable and

Jim fbsn(x)dx=fbs(x)dx.

Note that this theorem is much more powerful than Theorem 2 based on
uniform convergence in Section 6. Here we need only pointwise conver-
gence (and then only almost everywhere), the interval does not need to be
bounded, and the integrability of the limit is guaranteed by the theorem
instead of having to be hypothesized.

Let us apply the theorem to sequence (6.2). If & <e, we can show from
clementary calculus that alogy <y for all y>0. Setting y=nx, we find
n%e” ™ <x % or

(7.1) gl x) <l x>0.

Clearly x'~* is integrable from 0 to 1 if a <2; since 2 <e, (7.1) also holds
and therefore the Lebesgue theorem yields (6.5) for a <2. In fact, we can
refine (7.1) to show that, for a <2, 5,(x) <f(x), 0 <x < o, where [&f(x)dx
is finite. The Lebesgue theorem then tells us that

lim [ s,(x)dx=0, a<2.
H—0 I}

The other principal fact we need to know about Lebesgue integration is
the completeness of L,(a,b), the space of real-valued, square integrable
functions on @ <x <b. Thus u(x) € Ly(a,b) if and only if

fbul(x) dx < oo,

In L, we use the distance function (6.8). The significance of the complete-
ness of L, will be better appreciated on reading Chapter 4.
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