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Abstract. We consider undercompressive traveling wave solutions of the partial differential
equation

∂th + ∂xf(h) = −∂x(h3∂3xh) + D∂x(h3∂xh),

when the flux function f has the nonconvex form f(h) = h2 − h3. In numerical simulations, these
waves appear to play a central role in the dynamics of the PDE; they also explain unusual phenomena
in experiments of driven contact lines modeled by the PDE. We prove existence of an undercom-
pressive traveling wave solution for sufficiently small nonnegative D and nonexistence when D is
sufficiently large.
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1. Introduction. The partial differential equation (PDE)

∂th+ ∂xf(h) = −∂x(h3∂3
xh) +D∂x(h

3∂xh)(1.1)

describes the flow of a thin liquid film on an inclined flat surface, under the action of
gravity, viscous, and surface tension forces. Parameters governing these forces, and
the slope of the surface, are incorporated into the dimensionless parameter D ≥ 0.
In particular, D = 0 for a vertical surface. The unknown function h = h(x, t) is the
(dimensionless) thickness of the thin film layer.

Equation (1.1) arises from the standard lubrication approximation of the Navier–
Stokes equations [BB97, BMS99, Gre78]. We consider the specific physical problem in
which the film is driven by two counteracting forces, namely, gravity pulling the film
down the plane, and a thermal gradient, which induces a surface tension gradient,
pushing the film up the plane. The interested reader should see [BMFC98, BMS99]
for a discussion of (1.1) and the dimensionless scaling. For this particular problem,
the dimensionless flux function in (1.1) is

f(h) = h2 − h3.(1.2)

Equation (1.1) results when we assume the film height is independent of an additional
transverse space variable (cf. (6.3) at the end of this paper). Experimental and nu-
merical studies of driven contact lines [THSJ89, BB97, BMFC98, JSMB98] show that
traveling wave solutions of the PDE (1.1) play an important role in the motion of the
film. The significance of the nonconvexity of the flux function in (1.2) is that (1.1)
then admits the possibility of undercompressive traveling waves, which we discuss in
detail below.
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Driven contact line experiments that can be modeled by (1.1) show some unusual
dynamics. First, there are experiments in which there is only one dominant driving
force, corresponding to a convex flux function f . For example, f(h) = h2 in the
case of dominant Marangoni stress [CHTC90, KT97] or f(h) = h3 in the case of
gravitational stress [Hup82, THSJ89, dB92]. For such examples, the film forms a
pronounced “capillary ridge” which corresponds mathematically to a nonmonotone
traveling wave solution of (1.1). The ridge results from the interaction of surface
tension, in the form of the fourth order diffusion on the right-hand side of (1.1), with
the driving force, in the form of the convective term (f(h))x. Such ridges have always
been associated with instabilities of the film that lead to the formation of finger-
like structures [BB97, THSJ89, dB92, JdB92, VIC98] in which h develops a growing
oscillatory dependence on the transverse variable.

Secondly, it is interesting to contrast the driven contact line experiments where
one force dominates with those experiments involving competing Marangoni and grav-
itational stresses. Early experiments [LL71] of relatively thick Marangoni-gravity
driven films show a stable front with monotone decrease of the film profile from the
bulk to the contact line. Recent experiments [Fan98, BMFC98] show that for inter-
mediate thickness films, a capillary ridge forms but continues to broaden while the
contact line remains stable and no fingering occurs. The model (1.1) with the non-
convex flux (1.2) has recently been used to establish that undercompressive traveling
waves are responsible for the unusual ensuing dynamics of the front [MB99, BMFC98].
In these papers, the prewetted surface is modeled as a thin precursor layer, avoiding
unresolved issues of how to model a propagating liquid/solid/air contact line.

The consideration of traveling waves reduces the fourth order partial differen-
tial equation to a third order ordinary differential equation (after integrating once)
depending on two parameters, namely the wave speed and the downstream film thick-
ness. In the three-dimensional phase space of the ODE, compressive waves correspond
to a codimension zero intersection of the two-dimensional unstable manifold of one
equilibrium with the two-dimensional stable manifold of another equilibrium. Gener-
ically, this intersection is transverse and hence structurally stable, persisting under
perturbations of the equation. For convex flux functions, e.g., f(h) = h2 (Burgers
flux), existence of compressive waves follows either from the analysis of Kopell and
Howard [KH75] or from an argument involving a Lyapunov function and the Conley
index [Mic88, Ren96, BMS99].

In contrast, undercompressive waves, which only arise when the flux is nonconvex,
correspond to a codimension one intersection of the one-dimensional unstable manifold
of one equilibrium with the two-dimensional stable manifold of another equilibrium.
This situation typically only occurs for special values of the parameters in the ODE.
The analysis of such special connections is straightforward for corresponding problems
in second order ODEs; the phase space is two-dimensional and the Melnikov integral
gives a measure of the separation of the manifolds in question. In our situation,
the phase space is three-dimensional and the argument is more difficult. Our proof of
existence of the undercompressive wave uses, in a central way, a Lyapunov function for
the ODE to analyze the behavior of the one-dimensional unstable manifold from the
largest equilibrium of the system. We combine this analysis with a shooting argument
involving both topological properties of the orbit and quantitative estimates of higher
derivatives of the solution and of its turning points. The techniques presented here
apply to more general nonconvex flux functions than (1.2) and may be useful in
understanding other higher dimensional bifurcation problems.
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Undercompressive shock waves have been found in other physically motivated
models involving systems of equations with application to dynamic phase transitions
in elastic solids [AK91, Jam80, She86], liquid/vapor phase transitions [Sle83, Tru87],
plane magnetohydrodynamic waves [Fre97], and multiphase flow related to secondary
oil recovery [IMP90, SSMPL87, IMPT92]. Moreover, undercompressive waves have
been analyzed in nonconvex conservation laws, with second order dissipation and
(third order) dispersion [HL97, HS98, JMS95]. The model (1.1) represents the first
realization of undercompressive shocks arising in a scalar conservation law with direct
connection to experiments. The fourth order nonlinear diffusion, which has its own
curious properties (see [Ber98] and references therein), combined with the nonconvex
flux f yields undercompressive waves.

In an earlier paper [BMS99], we identified numerically new traveling wave solu-
tions of (1.1) for D = 0 that correspond to undercompressive shock wave solutions
of the conservation law. In this paper, we prove the existence of undercompressive
traveling waves for small D ≥ 0. Specifically, we show that for each downstream film
thickness h+ there is an undercompressive traveling wave, provided D ≥ 0 is not too
large. On the other hand, we also show that if D is large enough, then there is no
undercompressive traveling waves with right state h+. The latter property agrees
with the limit D −→ ∞, for which second order diffusion dominates, and the the-
ory is classical [Smo94]. In section 2 we discuss preliminaries concerning the phase
space, and in section 3 we introduce the Lyapunov function that plays a major part in
making the shooting argument work. section 4 contains the proof of existence of the
undercompressive waves, while section 5 is a proof of nonexistence for large enough
D.

2. Preliminaries. We are interested in traveling wave solutions of the equation

∂th+ ∂xf(h) = −∂x(h3∂3
xh) +D∂x(h

3∂xh),(2.1)

with f(h) = h2−h3, and D ≥ 0. On long scales, solutions of (2.1) behave like solutions
of the corresponding scalar conservation law

∂th+ ∂xf(h) = 0.(2.2)

For this equation, recall that characteristics are straight lines

dx

dt
= f ′(h),

on which h is constant. A piecewise constant function

h(x, t) =

{
h− if x < st,
h+ if x > st

(2.3)

is a shock wave solution (with shock speed s) if the triple h−, h+, s satisfies the
Rankine–Hugoniot condition

−s(h+ − h−) + f(h+)− f(h−) = 0.(2.4)

A shock wave is compressive if the characteristics on each side of the shock impinge
on the shock. This property is the Lax entropy condition:

f ′(h+) < s < f ′(h−).(2.5)
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As we shall see, undercompressive waves violate the Lax entropy condition.
A traveling wave solution h = h(ξ), ξ = x− st, of (2.1) with speed s that has far

field limits

lim
ξ→−∞

h(ξ) = h− and lim
ξ→∞

h(ξ) = h+(2.6)

can be thought of, on large scales, as a “viscous” form of the shock (2.3). The existence
of stable traveling wave profiles of (2.1) connecting the state h− to the state h+ is a
criterion for the admissibility of the shock (2.3) in the large scale dynamics of (2.1).
We are interested in the possibility of admissible undercompressive shocks, violating
(2.5).

In general, traveling waves satisfy the third order ODE

−s(h− h+) + f(h)− f(h+) = −h3h′′′ +Dh3h′.(2.7)

(In integrating the equation once, we have assumed h′(ξ) → 0 and h′′′(ξ) → 0 as
ξ → ∞.) Equation (2.7) has two parameters h+ ∈ (0, 1/3) and s > 0. Possible left
states h = h− (where h′ = 0 = h′′′) are determined by (2.4), the Rankine–Hugoniot
condition for shocks.

To discuss (2.7), we begin by rewriting it:

h′′′ = g(h;h+, s) +Dh′,(2.8)

where

g(h;h+, s) = −h−3 (−s(h− h+) + f(h)− f(h+)) .(2.9)

At an equilibrium of (2.9), h = he, g(he, h+, s) = 0, and the linearized ODE u′′′ =
∂g
∂h (he;h+, s)u+Du′ has characteristic equation

λ3 −Dλ− ∂g

∂h
(he;h+, s) = 0.(2.10)

For D = 0, the three eigenvalues are simply the three cube roots of ∂g
∂h (he;h+, s).

Since ∂g
∂h (he;h+, s) = − 1

h3
e
(f ′(he)− s), the sign of ∂g

∂h (he;h+, s) at any equilibrium he
is related to whether characteristics at he, traveling with speed f

′(he), are faster or
slower than the speed s of the traveling wave. For 0 ≤ D < 3( 12

∂g
∂h (he;h+, s))

2/3, there

is one real eigenvalue λ(D) (satisfying λ(0) = ( ∂g∂h (he;h+, s))
1/3), and two complex

conjugate eigenvalues λ±(D). For larger D, all three eigenvalues are real. Moreover,

λ(D) �= 0 and sgn�(λ±(D)) = −sgnλ(D) for all D.

To describe the structure of equilibria, we write (2.8) as a first order system:

h′ = v,
v′ = w,
w′ = g(h;h+, s) +Dv.

(2.11)

We have the following classification of nondegenerate equilibria (h, v, w) = (he, 0, 0)
for (2.11).

(i) If f ′(he) < s, then ∂g
∂h (he;h+, s) > 0, so that (he, 0, 0) has a one-dimensional

unstable manifold and a two-dimensional stable manifold on which, for small D,
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solutions spiral into the equilibrium due to the complex conjugate pair of eigenvalues
with negative real part.

(ii) If f ′(he) > s, then ∂g
∂h (he;h+, s) < 0, so that (he, 0, 0) has a one-dimensional

stable manifold and a two-dimensional unstable manifold on which, for small D, solu-
tions spiral away from the equilibrium due to the complex conjugate pair of eigenvalues
with positive real part.

It is convenient to label the equilibria in order of their corresponding values of h.
Physically h+ plays the role of a precursor layer in an experiment. Thus the relevant
range is for h+ small. Define b = h+ ∈ (0, 1/3) and let this be fixed. Treating s as a
parameter, let1 h = hm(s) ≤ ht(s) be the two roots (different from h+) of (2.4):

h+ b− (h2 + bh+ b2) = s

for s in the range

s1 = f ′(b) ≤ s ≤ 2(f((1− b)/2)− f(b))

(1− 3b) = s2.(2.12)

For brevity, we sometimes write m = hm(s), t = ht(s). In particular (see Figure 2.1),

b < m <
1− b

2
< t < 1− 2b if s1 < s < s2,

and

b = m; t = 1− 2b if s = s1, m = t = (1− b)/2 if s = s2.

Moreover, (with h+ = b) the vector field (2.11) has three equilibria when s1 <
s < s2 : B = (b, 0, 0),M = (m, 0, 0), T = (t, 0, 0). From the discussion of equilibria
above, we see that B and T each have a one-dimensional unstable manifold and a two-
dimensional stable manifold, whereasM has a two-dimensional unstable manifold and
a one-dimensional stable manifold.

The arguments of Kopell and Howard [KH75, BMS99] show that if B and M (or
M and T ) are sufficiently close, then there is a trajectory from M to B (or M to
T , respectively). The corresponding traveling wave is necessarily compressive since
f ′(b) < s < f ′(m) (and f ′(t) < s < f ′(m)). Such trajectories lie along the intersection
of the two-dimensional unstable manifold from M and the two-dimensional stable
manifold from B (or T , respectively). This construction is structurally stable in that
it persists under small perturbations of the vector field (for example, by changing s
while keeping b fixed).

Undercompressive waves correspond to trajectories from T to B, or from B to
T . These occur when the one-dimensional unstable manifold from T (from B, respec-
tively) lies in the two-dimensional stable manifold from B (from T, respectively), a
codimension one construction. The main result of section 4 is that for b fixed and for
all small D ≥ 0, there is a value of s for which there is such a trajectory from T to
B. (The corresponding result from B to T follows by a symmetric argument, but is
less significant physically.)

In section 5 we show that for each b < 1/3, and for D sufficiently large, there is
no value of s for which there is an undercompressive traveling wave from T to B. This
result expresses the notion that for large D, second order diffusion dominates fourth
order diffusion. In the absence of fourth order diffusion, the only traveling waves are
compressive.

1Note that the subscript t here does not denote partial derivative. It is an index to denote the
specific equilibrium.
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t 12bb m (1−b)/2

s=s1

s=s2

f(h)

h

Fig. 2.1. Flux function f(h) = h2 − h3, and chords indicating equilibria and wave speeds.

3. The Lyapunov function. Equation (2.8) has a Lyapunov function

L(h) = h′′h′ +R(h),

where

dR

dh
(h) = −g(h; b, s),

which we use extensively in the analysis of traveling waves. The equilibria B,M, T
correspond to extrema b,m, t of R(h), as shown in Figure 3.1.

Differentiating along a solution h(ξ) and using the ODE (2.8), we find that

L(h)′ = (h′′)2 +D(h′)2.

Therefore, L(h) increases along trajectories. In particular, R(h) increases at successive
critical points of a solution h(ξ) of (2.8). It follows that for any traveling wave solution
connecting extrema of R(h) there exist a priori upper and lower bounds for the critical
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Fig. 3.1. The function R = −dg/dh in the Lyapunov function. Pictured are the three equilibria,
b, m, and t, of (2.11) and the a priori upper and lower bounds h∗∗ and h∗, defined in (3.2), for a
traveling wave solution.

points hcrit of the traveling wave

h∗ < hcrit < h∗∗,(3.1)

where h∗ and h∗∗ are defined by (see Figure 3.1)

h∗ = min{h : R(h) ≥ R(m)}, h∗∗ = max{h : R(h) ≥ R(m)}.(3.2)

Note that R and hence h∗, h∗∗ depend on b and s.

4. Existence of an undercompressive wave. In this section, we fix h+ = b <
1/3, and consider the vector field (2.11) with s and D varying. An undercompressive
wave occurs when there exists a trajectory (a heteroclinic orbit) from the equilibrium
T = (ht(s), 0, 0) to the equilibrium B = (b, 0, 0). We show that for sufficiently small
D (depending on the value of b), there exists a special value of s, call it s∗, for which
there is such a trajectory.

For each value of s, we consider a special solution of (2.11), corresponding to
the branch of the unstable manifold from the equilibrium (ht(s), 0, 0) that initially
decreases in h. Let ht(ξ; s), −∞ < ξ, denote the solution of (2.8) corresponding to
this branch. By the stable manifold theorem and the Picard continuation theorem for
ODEs, ht(ξ; s) is smooth and tangent to the unstable manifold of the linearized ODE
about ht and is determined uniquely up to translation in ξ. The goal of this section
is to prove that there is an s∗ for which

lim
ξ−→∞

ht(ξ; s∗) = b.

The proof of this result was inspired in part by results from numerical simulations
[BMS99, M99]. The argument is a one parameter, one direction shooting argument.
In Proposition 4.1 below, we show that for s near s1, for which b and hm(s) are
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close, ht(ξ; s) decreases monotonically, reaching zero at a finite value of ξ. On the
other hand, in Proposition 4.2, we show that for s near s2, so that hm(s) and ht(s)
are close, ht(ξ; s) has a minimum value above h = b; the trajectory then increases
without bound. The trajectory we seek lies between these two extremes; its existence
is established in Theorem 4.8. While this paper establishes existence of such a special
shock speed, uniqueness remains an open problem. However, numerical computations
[BMS99, M99] reveal the shock speed and undercompressive wave to be unique.

The first part of this argument is based on the Lyapunov function. First note
that there is a value of s, call it sl, such that the two maxima of R(h; s), b and ht(s)
satisfy R(b; s) = R(ht(s); s) and

R(b; s) < R(ht(s)) for all s satisfying f ′(b) < s < sl.

The function R has a global maximum at ht(s) for s in this range. Figure 3.1 shows
a case where s > sl; in this case R has a global maximum at b.

Proposition 4.1. For all s, f ′(b) < s < sl, ht(ξ; s) decreases monotonically to
hit zero at a finite value of ξ.

Proof. Suppose that ht(ξ; s) has a local minimum at a finite ξ = ξ0. Then,
necessarily vt(ξ; s) ≡ (ht(ξ; s))ξ is zero at ξ0. Since the Lyapunov function increases
along trajectories, we have R(ht(ξ0; s) ≥ R(ht(s)). However, this contradicts the fact
that ht(s) is a global maximum of R for this range of s. Thus there can be no local
minimum at finite ξ0.

Now we show the solution decreases to hit zero at finite ξ. To see this, we note
that since h is monotonically decreasing, it either hits zero at finite ξ0 or it stays
positive for all ξ < ∞, which means that because it is decreasing, it has a limit
h→ h0 ≥ 0. We now show that the latter case leads to a contradiction.

First suppose that h0 > 0. Then the only choices are h0 = b or h0 = hm(s).
Otherwise, (2.8) implies that h′′′ − Dh′ will remain bounded away from zero on an
interval of the kind [l0,∞) which implies that h′′ −Dh, and hence h′′ and h′ become
unbounded, which is a contradiction. The two equilibria, b and hm(s) are also ruled
out by the properties that L(h) is an increasing function of ξ, L = R at equilibria,
and R has a global maximum at h = ht(s). Thus we can not have that h0 > 0.

Now suppose h decreases monotonically to zero in infinite time. Again, from the
ODE, this implies that eventually the h′′′ −Dh′ becomes monotonically unbounded,
inconsistent with h decreasing monotonically to zero.

The only choice then is for h→ 0 at some finite ξ.
Proposition 4.2. Let b ∈ (0, 1/3). There are numbers D0, s, s with s� < s <

s < s2 such that for all D ∈ [0, D0] and all s ∈ [s, s], ht(ξ, s) has a global minimum
between hm(s) and b. The solution then increases without bound after reaching that
minimum.

Proof. It suffices to prove that ht(ξ; s) has a global minimum between hm(s) and
b. The result then follows from the Lyapunov function and a similar argument to the
first part of the proof of Proposition 4.1.

First we prove that for D = 0, there is a range of s, su < s < s2 for which ht(ξ, s)
has the property claimed in the proposition. Then we use a perturbation argument
to prove the result for small positive D.

To show that ht(ξ; s) has such a minimum, we first estimate the trajectory at
hm(s) in terms of the parameter ρ = ht(s) − hm(s), which decreases to zero as s
approaches s2. In what follows, we consider ρ > 0 to be small.

Lemma 4.3. Let D = 0. Then ht(ξm; s) = hm(s) for some ξm <∞.
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Proof. To simplify notation, consider s fixed, and write h = h(ξ) in place of
h = ht(ξ, s). Then h has the properties

(h, h′, h′′) −→ (ht(s), 0, 0) as ξ −→ −∞,

and moreover

(h, h′, h′′) ∼ (ht(s), 0, 0)− Ceλξ(1, λ, λ2) as ξ −→ −∞,

where

λ =

(
∂g

∂h
(ht(s); b, s)

)1/3

is the positive eigenvalue for the equilibrium (ht(s), 0, 0) for (2.11). In particular, for
ξ sufficiently negative,

h(ξ) < ht(s), v(ξ) = h′(ξ) < 0, w(ξ) = h′′(ξ) < 0.(4.1)

Now define the open set O ⊂ R3 by

O = {(h, v, w) : hm(s) < h < ht(s), v < 0}.

Then (h, v, w)(ξ) ∈ O for all ξ < M, for some M.
Next note that the vector field (2.11) is uniformly Lipschitz in O, since the only

nonlinearity is in g(h; b, s), a function of h alone (for fixed b, s) whose derivative is
bounded for hm(s) ≤ h ≤ ht(s). Therefore, the solution (h, v, w)(ξ) can be continued
in ξ as long as it remains in O. That is, either (a) the solution stays in O for all ξ ∈ R,
or (b) the solution exits S at some finite ξ = ξT .

In case (a), the solution must approach an equilibrium as ξ −→ ∞. Thus,
(h, v, w) −→ (hm(s), 0, 0), or (h, v, w) −→ (ht(s), 0, 0). Both possibilities are ruled
out by the property that the Lyapunov function must increase along the trajectory,
since R(hm(s)) and R(ht(s)) are both less than or equal to the value of the Lyapunov
function at ξ = −∞.

In case (b), (h, v, w)(ξT ) ∈ ∂O. Thus, (i) h′(ξT ) = 0, or (ii) h(ξT ) = ht(s), or
(iii) h(ξT ) = hm(s). But in O, h

′′′ = g(h; b, s) < 0, so that h′′ is decreasing, hence
negative, by (4.1). But this implies that h′ is decreasing, and must also be strictly
negative, contradicting (i) and ruling out (ii). Hence, (iii) holds, completing the proof
of the lemma.

To proceed further with the proof of Proposition 4.2, we parameterize the unstable
manifold

{(h, v, w)(ξ) : −∞ < ξ <∞}

by h, up to the first minimum of h(ξ). That is, we consider v = v(h) = h′(ξ), and we
write (2.8) with D = 0 as a nonautonomous equation for v(h):

v2v′′ + v(v′)2 = g(h; b, s).(4.2)

The solution of (4.2) we consider satisfies v(t) = 0, and v′(t) > 0. In fact, higher
derivatives of v at h = t can easily be determined using the Taylor series of v(h) about
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h = t. To simplify notation, we write ht(s) = t, and hm(s) = m. Then ρ = t−m > 0.
Next, define a new function G(h; ρ) for ρ ≥ 0, t− ρ ≤ h ≤ t by

G(h, ρ) =




g(h; b, s)/[(h− t)(h− t+ ρ)] for t− ρ < h < t,

−1
ρ

∂g

∂h
(t− ρ; b, s) if h = t− ρ,

1

ρ

∂g

∂h
(t; b, s) if h = t.

Then G is as smooth as g, except at h = t, h = t − ρ, where, in general, G loses
a derivative. For the specific g in this paper, both g and G are rational functions of
h, so there is no loss of derivative. Note that G(h, ρ) > 0 for t − ρ ≤ h ≤ t, and
g(h; b, s) = (h− t)(h− t+ ρ)G(h, ρ).

We scale (4.2) as follows: Write

h = t+ ρθ, v = ρ4/3y(θ).(4.3)

Then (4.2) becomes

y2y′′ + yy′2 = θ(θ + 1)G(t+ ρθ, ρ).(4.4)

From the Taylor series expansion of y(θ) about θ = 0, where we impose the condition
y(0) = 0, we find

y′(0) = G(t, ρ) = G(t, 0) +O(ρ).(4.5)

Now Lemma 4.3 implies the following.
Lemma 4.4. There are constants ρ0 > 0, 0 < α < β, such that for each ρ ∈ (0, ρ0),

the solution y(θ),−1 ≤ θ ≤ 0, of (4.4) satisfying y(0) = 0, (4.5) also satisfies

−β < y(−1) < −α, α < y′(−1) < β.

Proof. First note that θ = −1 corresponds to ξm in Lemma 4.3. The scaled
Lyapunov function is L(y) = y2y′ +R(θ), where

R(θ) =

∫ 0

θ

η(η + 1)G(t+ ρη, ρ)dη < 0

for −1 ≤ θ < 0. Specifically, d
dθL(y) = yy′2 < 0, so that L(y) increases as θ, hence

y decreases. If y′ = 0, then L(y) = R(θ) < R(0) = 0 = L(0). Thus, L(y) has not
increased, which is a contradiction. Therefore, y′ > 0 along the entire trajectory from
θ = 0 to θ = −1. The result now follows by bounding the O(ρ) term in G.

From the rescaling (4.3) and the chain rule, we conclude the following.
Corollary 4.5. Let v(h) be the solution of (4.2) corresponding to y(θ) of

Lemma 4.4. Then

−ρ4/3β < v(m) = ρ4/3y(−1) < −ρ4/3α; ρ1/3α <
dv

dh
(m) = ρ1/3 dy

dθ
(−1) < ρ1/3β.

(4.6)
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Now, for b ≤ h ≤ m, g(h) > 0, so that as long as v(h) < 0, (4.2) implies that
v′′(h) > 0. Thus v is a convex function of h whenever v is negative. We use this fact
below.

To complete the proof of Proposition 4.2, we suppose that v(h) < 0 for b < h < m
and look for a contradiction. The idea is to show that for small enough ρ, by estimating
v and v′(h) over half this interval, when we integrate (4.2) the integral of g remains
bounded away from zero, while the integral of the left-hand side approaches zero.

Note that for all b < h < m,

0 > v(h) = v(m)−
∫ m

h

v′(η)dη ≥ v(m)− (m− h)v′(m)

(since v′(η) ≤ v′(m) for η ≤ m). Therefore,

|v(h)| ≤ |v(m)|+ (m− h)K1ρ
1/3 ≤ Kρ1/3, hM ≤ h ≤ m,

for some K > 0 independent of ρ.
Also, the convexity of v and inequality (4.6) imply that

Kρ1/3 > v′(m) > v′(h) ≥ v(h)− v(b)

h− b
(4.7)

for all b < h < m. Now consider hM = (m+ b)/2. The above inequalities imply that

|v(hM )| ≤ Kρ1/3, |v′(hM )| ≤ K1ρ
1/3,

where in the second inequality we use (4.7), the bounds on v, and the fact that hm is
not close to b.

Now we integrate (4.2) from hM to m, integrating the left-hand side by parts:

v(m)2v′(m)− v(hM )
2v′(hM )−

∫ m

hM

v(h)v′(h)2dh =
∫ m

hM

g(h)dh.

But the left-hand side is order ρ, while the right-hand side is order one, as ρ −→ 0.
This contradiction implies that v(h) = 0 for some h ∈ (b,m), for each ρ > 0 sufficiently
small.

To summarize, we have so far shown that for D = 0, there is a range su < s < s2
for which the unstable manifold from t decreases to a global minimum between m
and b and then increases without bound. To continue the proof of Proposition 4.2,
we need to establish the same behavior for small D > 0. Since the unstable manifold
from t depends continuously on D, away from s = s2 (at s = s2, two equilibria
coincide, so the unstable manifold degenerates), there is D0 > 0 and two values of s,
say su < s < s < s2 such that for 0 ≤ D ≤ D0, s ≤ s ≤ s, the unstable manifold from
t has hξ = v changing sign for h between m and b. It then follows from the Lyapunov
function argument used previously that the solution h(ξ; s) has a global minimum
between m and b.

Finally we note that the solution increases without bound after the local mini-
mum between m and b. This is because, like the preceding arguments based on the
Lyapunov function, the solution cannot have a local maximum after hitting this min-
imum and cannot asymptote to either the fixed point m or b. This completes the
proof of Proposition 4.2.
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We now define two distinguished values of h. Let

h = max
s1≤s≤s2

h∗∗(s), h = min
s1≤s≤s2

h∗(s),(4.8)

where h∗ = h∗(s), h∗∗ = h∗∗(s) are given by (3.2).
Lemma 4.6. For all s ∈ (s1, s2), the trajectory ht(ξ, s) crosses the boundary of

the set h < h < h at most once, either by increasing h above h or by decreasing h
below h. In the former case, the solution increases without bound after it leaves this
set and in the latter case, the solution hits zero at finite ξ.

Proof. Suppose the trajectory ht(ξ, s) crosses the lower boundary h. Then it is
impossible for the solution to turn around. If it did, there would be a local minimum at
a value hmin < h, which by the definition of h in (4.8) violates the Lyapunov condition
(3.1). Likewise if ht(ξ, s) crosses the upper boundary h it cannot turn around because
this would again violate (3.1).

Now define

S = {s ∈ (s1, s2)|ht(ξ, s) increases above h for some finite ξ}.

For all D satisfying the conditions of Proposition 4.2 we know that S is not empty;
it contains at least one interval near s2. Also, from Proposition 4.1, we know that S
does not contain any s < sl. Thus for all D satisfying the conditions of Proposition
4.2, the following special value of s is well defined:

s∗ = inf{S}.(4.9)

Clearly s∗ ≥ sl.
Lemma 4.7. Let D satisfy the conditions of Proposition 4.2 and s∗ be defined as

in (4.9). Then the trajectory ht(ξ; s∗) remains bounded between h and h and can be
continued in this range for all ξ <∞.

Proof. First we note that ht(ξ; s∗) stays below h. Suppose it crosses h at finite
ξ = ξ0 (i.e., s∗ ∈ S). Since solutions of (2.11) have continuous dependence on the
parameter s, there then exists an ε > 0 so that s∗ − ε′ ∈ S for all 0 < ε′ < ε. This
contradicts the fact that s∗ = inf S. Now we show that ht(ξ; s∗) stays above h for
all ξ. Suppose it does not. Then there exists a value ξ0 at which ht(ξ; s∗) crosses
h. Again, since solutions of (2.11) have continuous dependence on the parameter s,
there exists an ε > 0 so that for all ε > ε′ > 0, ht(ξ; s∗ + ε′) crosses the lower bound
h. Hence s∗ + ε′ /∈ S. However, this contradicts the fact that s∗ is the infimum.

Thus the trajectory ht(ξ; s∗) is guaranteed to stay between h and h. We need to
show that the trajectory can be continued for all time. As in the proof of Lemma 4.3,
we can do this by using the continuation part of the Picard theorem for ODEs, pro-
vided we can show uniform Lipschitz continuity of (v, w, g(h)) as a function of (h, v, w).
Since the solution is guaranteed to have h bounded between h and h, by the form of
g, Lipschitz continuity is guaranteed for the third component. Moreover, the other
two terms are linear in v and w, so that uniform Lipschitz continuity is guaranteed
for (h, u, v) in the set [h, h] × R × R. The solution can thus be continued for all
ξ <∞.

Theorem 4.8. Given D satisfying the conditions of the statement of Proposi-
tion 4.2, and s∗ defined in (4.9), the unstable manifold ht(ξ, s∗) (with s∗ defined as
above) connects the equilibrium ht(s∗) to the equilibrium b and hence describes an
undercompressive wave.
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Proof. We have that ht(ξ, s∗) is bounded. For ease of notation below, we denote
this trajectory simply by h(ξ).

Case 1: There exists a finite ξmax above which h(ξ) has no extrema, i.e., it is
monotone increasing or decreasing. Since h is bounded, it is convergent to a limit as
ξ → ∞. That limit must be an equilibrium. If not, then h′′′ is uniformly bounded
away from zero on a semi-infinite line [ξ0,∞) and we can show this causes h, h′, and
h′′ to become unbounded. That equilibrium has to be either m, b, or t. However,
by comparing the values of the Lyapunov function, we see that the only choice is b,
since R(m) < R(ht), the Lyapunov function can be shown to initially increase by
comparing the solution with the predicted linear theory. Note that although this case
does imply that h(ξ)→ b as ξ → ∞, this case is not the expected scenario. Note that
when D is small, the stable manifold of b has two complex conjugate eigenvalues so
that we would expect a trajectory on it to spiral in to b, i.e., we expect such a solution
to have an infinite number of local extrema as ξ → ∞.

Case 2: There exists a set of points X ∈ R where h has an extremum and hence
hξ = 0, and sup{X} =∞.

First note that such points are isolated. This is because the a priori upper and
lower bounds on the solution and the fact that it satisfies (2.8) imply that h(ξ) is a
global real analytic function, and hence if there is a cluster point for hξ = 0, then
hξ must be identically zero, which is clearly not the case. Thus the set X must be a
countable set ξi and ξi → ∞ as i→ ∞.

Denote by hi the value h(ξi). Let us suppose without loss of generality that ξi
are local minima for i odd and maxima for i even. From the Lyapunov function,
we see that all extrema satisfy R(h(ξi)) > R(ht). Moreover R(hi) is an increasing
sequence that is also bounded, so it converges to a value R1. Furthermore, all minima
must lie below b. This is because if, say, hk lies above b, then since R(h) is monotone
decreasing on the set R(h) > R(ht), h > b, then R(hk+1) < R(hk) because hk+1 is a
local maximum. However, this contradicts the fact that R(hi) is increasing. Likewise,
a similar argument shows that the local maxima all lie above b.

By (3.1) and (4.8), the solution lies between h and h. The proof follows provided
we can show that h′ and h′′ approach zero as ξ → ∞.

To do this, we make some explicit estimates, using (2.8) and the Lyapunov func-
tion. First note that since R(hi) is increasing, the hi oscillate around h = b: hi < b
at a min and hi+1 > b at a max. Therefore, there are two convergent subsequences,
h2n+1 → h1, h2n → h2, with h2 − h1 ≥ 0.

Now note that for each ξi,

R(hi)−R(ht) =

∫ ξi

−∞
h2
ξξ +D

∫ ξi

−∞
h2
ξ .

Taking the limit as i→ ∞ and recalling that D ≥ 0 gives∫ ∞

−∞
h2
ξξdξ ≤ D

∫ ∞

−∞
h2
ξdξ +

∫ ∞

−∞
h2
ξξdξ = R1 −R(ht) ≤ R(b)−R(ht) <∞.

We now invoke the following interpolation inequality [Tay96, p. 9];

‖hξ‖L4(R) ≤ C‖h‖1/2
L∞‖hξξ‖1/2

L2(R).

This means that since h is uniformly bounded and hξξ is bounded in L
2(R) that hξ

is bounded in L4(R).
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On [ξi, ξi+1], hξ has the fixed sign (−1)i+1. Now choose βi ∈ [ξi, ξi+1] so that |hξ|
attains a maximum on this interval at βi. Compute

|h3
ξ(βi+1)− h3

ξ(βi)| = |hξ(βi+1)|3 + |hξ(βi)|3

= 3

∣∣∣∣∣
∫ βi+1

βi

h2
ξhξξdξ

∣∣∣∣∣
≤ 3

∫ βi+1

βi

|hξ|2|hξξ|dξ

≤ 3
[∫ βi+1

βi

|hξ|4
]1/2 [∫ βi+1

βi

|hξξ|2dξ
]1/2

≤ 3εiδi,

where

δi =

[∫ βi+1

βi

|hξ|4
]1/2

, εi =

[∫ βi+1

βi

|hξξ|2dξ
]1/2

,

and where
∑

i ε
2
i and

∑
i δ

2
i are both finite. Thus εiδi → 0 as i → ∞. By the choice

of β, this also implies that |hξ|3 and hence |hξ| goes to zero as ξ → ∞. Note that this
also implies that hξ is uniformly bounded on R.

We now show that hξξ is uniformly bounded independent of ξ. Since h solves
the ODE (2.11), and since h is uniformly bounded between h and h, we have that
hξξξ −Dhξ, and hence hξξξ is uniformly bounded. Thus for any ξ,

|h3
ξξ(ξ)| = 3|

∫ ξ

−∞
h2
ξξhξξξdξ| ≤ C‖hξξ‖2

L2 <∞.

Finally note that the Lyapunov function is hξhξξ + R(h). Since it is increasing,
and the product hξhξξ goes to zero as ξ → ∞, then R(h(ξ)) approaches a constant.
The infinite sequence of alternating max and mins implies that that constant has to
be R(b).

Finally, since the trajectory {(h, h′, h′′)(ξ) : −∞ < ξ <∞} is bounded, and there
are no periodic orbits, the trajectory must approach an equilibrium as ξ −→ ∞. The
equilibrium is necessarily b, since this is the only equilibrium with R(h) > R(t). This
completes the proof of Theorem 4.8

5. Nonexistence of undercompressive waves for large D. In this section,
we show that for each b < 1/3, and for D sufficiently large, there are no undercom-
pressive traveling wave solutions having h = b as the downstream height. This is
formulated precisely in the following theorem, in which, as in the previous section, we
fix h+ = b, and consider the vector fields (2.11) to be parameterized by s and D.

Theorem 5.1. Let b ∈ (0, 1/3). Then there is D1 > 0 such that for D > D1

and s1 < s < s2, there is no orbit from the equilibrium (ht(s), 0, 0) to the equilibrium
(b, 0, 0).

Proof. We need to show that the unstable manifold from ht(s) never connects to
the fixed point at b.
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Recall the ODE is

h′ = v,

v′ = w,(5.1)

w′ = g(h) +Dv,

where

g(h) = −f(h)− sh− f(b) + sb

h3
.

Some of the results in the preceding section apply to this case, in particular
Proposition 4.1 and Lemma 4.6. Using these two results, we now show that for
sufficiently large D (depending on b) for all s in the region that we are interested in,
ht decreases monotonically to zero, in which case it can never connect to the fixed
point at b.

To see that this is true, first note that the linearization of (5.1) near the fixed
point ht(s) yields eigenvalues that satisfy the equation

λ3 − λD − g′(ht) = 0.

Since g′(ht) ≥ 0, for smallD there is one positive real root and two complex roots with
negative real part. For sufficiently large D there is one positive real root λp ∼ √

D

and two real negative roots λ1 ∼ −g′(ht)/D and λ2 ∼ −√
D.

First we note that the Lyapunov function guarantees that the branch of the
unstable manifold from ht that initially increases can not turn around to connect to
b. This is because if the solution turns around, it must have a local maximum above
ht; however, the function R(h) decreases monotonically above ht.

Consider now the branch of the unstable manifold from ht that initially decreases.
We show that for D sufficiently large, this branch decreases to zero at finite ξ.

To linear order the solution looks like

ht(ξ; s) = ht − eλpξ(5.2)

for ξ very negative. Also, to linear order,

v ∼ λp(h− ht),

and as long as h > h (defined in (4.8)) we have an a priori bound for g(h). In
particular, we can choose D large enough so that the ODE (5.1) is dominated by the
linear behavior (i.e., g = 0) of the ODE while h > h. However, the linear behavior
simply has that h decreases monotonically like (5.2). So for D large enough, the
solution should decreases monotonically until it hits h. However, we know that once
it hits h it continues to decrease by Proposition 4.1.

We now make the above argument rigorous. Introducing the new variables

Q =
v

h− ht
, P =

w

h− ht
,

the ODE (5.1) is transformed to the system

Q′ = P −Q2,

P ′ = B(h(ξ)) +DQ−QP,(5.3)

where B(h) =
g(h)

h− ht
.
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Note that since g vanishes at ht, B is bounded and approaches g
′ at ht. Also, for

h < h < ht, |B| is bounded independent of D. Call this bound M(b). This system
has a fixed point for h = ht that corresponds to the positive eigenvalue λp above,
Q = λp, P = λ2

p. Now consider the rectangle

RD = {(Q,P )|
√
D/2 < Q < 2

√
D and D/2 < P < 2D}.(5.4)

Choose D to satisfy D > (4M)2/3. Then as long as h < h < ht, on the boundary of
RD, the vector field in (5.3) points into RD, which means that the solution remains

in RD. This gives a lower bound on Q =
hξ

h−ht
,

hξ
h− ht

≥ K > 0,

which implies hξ < K(h − ht) so that h(ξ) decreases exponentially: for all ξ > ξ0,
h(ξ)−ht ≤ (h(ξ0)−ht)e

K(ξ−ξ0) provided h < h(ξ′) < ht for all ξ
′ < ξ0. By the stable

manifold theorem, we know there exists such an ξ0 where h < h(ξ0) < ht. This is
sufficient to guarantee that h(ξ) hits h at a finite value of ξ.

6. Summary and conclusions. We have considered traveling wave solutions
h(x− st) of the PDE

∂th+ ∂x(h
2 − h3) = −∂x(h3∂3

xh) +D∂x(h
3∂xh).(6.1)

Recent numerical experiments [BMS99, M99] show that certain jump initial data give
rise to undercompressive structures, in which the leading part of the structure is an
undercompressive traveling wave, connecting states h− to h+, for which the speed s
of the wave violates the Lax entropy condition

f ′(h+) < s < f ′(h−).

For a fixed value of h+, the numerics show a special value of h− for which an under-
compressive waves exists when the parameter D in (6.1) is small. Likewise, for large
D, the numerics show that undercompressive waves do not exist. In this paper we
presented rigorous proofs of both of these numerical observations.

Traveling waves satisfy a third order autonomous ODE in which the downstream
thickness h+ and the wave speed s appear as parameters. For each h+ = b < 1/3,
there is a range of s for which the ODE has three (hyperbolic) equilibria, B, M , and
T . M has a two-dimensional unstable manifold while B and T have two-dimensional
stable manifolds. Compressive waves are heteroclinic orbits from M to either B
or T , codimension zero intersections of a two-dimensional stable manifold from one
fixed point with a two-dimensional unstable manifold from another fixed point. Such
intersections are structurally stable to perturbations and exist for a range of the
parameter s. In contrast, undercompressive waves are heteroclinic connections from
either T (or B) to B (or T , respectively). The situation that corresponds to the
physical problem of interest is the existence of a wave from T to B.

Our analysis relies heavily on the existence of a Lyapunov function for the ODE. It
follows directly from the Lyapunov function that there is a range of s (whereM is close
to B) for which a branch of the unstable manifold from T decreases monotonically
to zero. We then consider a range of s for which M is very close to T and rescale
the ODE using the distance from M to T as a scaling parameter. By analyzing the
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rescaled equation for D = 0, we are able to show that wheneverM is sufficiently close
to T , the initially decreasing branch of the unstable manifold from T has a global
minimum (in h) between m and b. Moreover, a perturbation argument shows this
property for D ≥ 0 and small, provided M is not too close to T . We then proceed
with an argument that shows that there is an intermediate value of the parameter s,
so that M is neither very close to B or to T for which the unstable manifold from T
must connect to B. This part of the proof is largely topological, but it includes some
explicit estimates on higher derivates of the solution along the unstable manifold from
T in order to guarantee that it stays bounded and hence connects to B.

In the last section of the paper, we show that for large values of D, regardless
of the speed s of the wave, the unstable manifold from T never connects to B. The
result is that there can never exist an undercompressive wave. The proof follows from
making a change of variables in the ODE to show that the linear system dominates
the dynamics along the unstable manifold, until the solution gets so small in h that
it must hit zero at finite ξ.

We mention some related papers discussing third order (ODE) travelling waves
that exist only for special parameter values or wave speeds. The paper of Grinfeld
[Gri89] deals with travelling waves for Korteweg capillary regularization of a van der
Waals fluid and uses Conley index theory to prove existence. The paper [BHP96]
deals with traveling waves in the compressive case f(h) = h3 but with a different
form of degenerate diffusion. They prove existence of waves with a sharp contact line
(h goes to zero) using a two directional shooting method. It would be interesting to
see if the methods of these papers also apply to the problem presented here.

It is interesting to note that our arguments extend, with slight modifications, to
the case of linear diffusion:

∂th+ ∂x(f(h)) = D∂2
xh− ∂4

xh.(6.2)

In fact, it is the fourth order diffusion that produces the undercompressive shocks.
Numerical simulation of (6.2) shows that similar structures occur in this case. The
main difference between (2.1) and (6.2) is that the degeneracy in the diffusion in (2.1),
in particular in the fourth order term, causes some singular behavior to occur for very
small values of h. Numerical computations of the traveling waves for D = 0 show
that as b→ 0, the value of s for which the undercompressive wave occurs approaches
s = 0 while the value of t approaches t = 1. For very small values of b, jump
initial data corresponding to very weak Lax shocks evolve to a solution of (6.1) with
two shocks, with the special undercompressive wave as the leading shock. Since this
undercompressive wave connects t ∼ 1 to b ∼ 0, we obtain a solution that reaches a
height of order one from initial data of small order. This is a beautiful example of a
violation of the maximum principle for convection-diffusion problems of higher order.
An open theoretical problem is to prove that with the nonlinear diffusion in (1.1), the
undercompressive waves have such singular limits as b→ 0.

Numerical simulations of Münch [BMS99, M99] show that the undercompressive
wave is the limit of a cascade of bifurcations that occur as the shock speed varies in
(2.11). In particular, for small values of D, the phase portrait of the ODE at the crit-
ical speed s∗ at which the undercompressive wave occurs has unusual structure. The
unstable manifold from T is part of the topological boundary of the (two-dimensional)
unstable manifold from M , which wraps around the unstable manifold from T in a
spiral with an infinite number of turns. The result is that at the critical speed s∗,
not only does the unstable manifold from T connect to B but the unstable manifold
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from M intersects the stable manifold of B an infinite number of times; there are an
infinite number of compressive waves connecting M to B with the undercompressive
wave from T to B as their limit. Part of this structure is reminiscent of Silnikov’s
example [GH86] and we expect that machinery to be useful in studying this problem.

Finally we note that stability of traveling waves yields another interesting set of
problems. Numerical simulations show that the undercompressive traveling waves, as
solutions of (1.1), are stable with respect to perturbations. However, when there are
multiple compressive waves at the same speed and with identical far field states, then
some are stable and some are unstable.

A physically relevant problem is to gain more theoretical insight into the stability
of traveling waves as plane wave solutions of the two-dimensional PDE

∂th+ ∂x(h
2 − h3) = D∇ · (h3∇h)−∇ · (h3∇∆h).(6.3)

This is an important problem for understanding fingering patterns in driven film flow.
Numerical simulations (with small D) show that compressive waves are typically un-
stable to transverse perturbations [THSJ89, BB97, KT97] while undercompressive
waves are stable to transverse perturbations [BMFC98, KT98]. These stability differ-
ences are reflected in recent and ongoing experiments.

Recent progress has been made in understanding stability of undercompressive
waves in systems of conservation laws [GZ98, LZ95]. These techniques will be used to
explore stability to one- and two-dimensional perturbations from a more theoretical
point of view in the near future [BMSZ99].
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