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Abstract. We consider the lubrication model for a thin film driven by competing gravitational
forces and thermal gradients on an inclined plane. We are interested in the general traveling wave
problem when the Navier slip boundary condition is used. We contrast (1) gravity dominated flow, (2)
Marangoni dominated flow, and (3) flow in which the two driving effects balance. For a “singular slip”
model we show that when Marangoni forces are present the resulting traveling wave ODE reduces
locally near the contact line to a case not considered previously in the literature. We compute an
asymptotic expansion of the solution near the contact line and compare with numerical simulations of
the full problem. Using numerical simulations and phase space analysis involving Poincaré sections,
we show that for all three problems there is a finite range of admissible contact angles for which
traveling wave solutions exist. Even in the well-studied case (1), this is a new observation that has
ramifications for the use of constitutive laws at the contact line in the case of singular slip. For case
(3) multiple traveling wave solutions are observed with the same contact angle.
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Introduction. Dynamic contact lines occur at the leading edge of a layer of
fluid coating a dry solid surface. Understanding how contact lines move has been the
subject of intense interest for several decades. In particular, it was shown by Dussan
and Davis [13] that motion necessarily implies a singularity of stress at the contact
line if the usual no-slip boundary condition is imposed between the fluid and the solid
surface. Two approaches to removing this singularity emerged early on, namely (i)
the precursor layer model and (ii) the Navier slip condition.

In 1964, Bascom, Cottington, and Singleterry [1] reported experimental observa-
tions of contact lines for thin liquid films. A very thin film was observed spreading
ahead of the thicker film, beyond the apparent location of the contact line. Based
on these and similar observations, one reasonable model is to assume that there is
a very thin layer of fluid ahead of the contact line. The contact line itself is then
replaced by a rapid transition from the thicker layer to the very thin layer. This is
the basis for the so-called precursor model studied in various contexts over a num-
ber of years. While this is an attractive and tractable way to remove the singularity
associated with the film thickness going all the way to zero, modeling the very thin
precursor layer using hydrodynamics can be questionable since its thickness is only a
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few Ångstroms. Within a continuum framework, this can be approached by including
additional physics, such as long range van der Waals forces [12, 34, 41] in a dynamic
model of the precursor layer itself (as in [16]).

The second approach that has received extensive study is to keep the distinct
contact line but remove the stress singularity by modifying the boundary condition
between the liquid and the solid surface at or near the contact line. The most promis-
ing way to do this is to introduce the Navier slip condition, proposed by Navier [32]
in 1832 during the long debate over whether a fluid can slide over a solid surface
[15]. The Navier condition was apparently first invoked in the context of lubrication
theory by Greenspan [17] and has since been included in numerous studies of contact
lines [2, 22, 31, 38, 39]. Again, this is an attempt to resolve the issue using only hy-
drodynamics, rather than dealing with the atomic scale forces that are undoubtedly
significant near the contact line. Nonetheless, it is plausible to believe that the effect
of these forces at the macroscopic scale could be captured in an empirical law like the
Navier slip condition. Once a choice of slip model is made, there is still the question
of the need for a boundary condition at the contact line. Greenspan [17] proposed
that the speed of the contact line is related to the contact angle. This was further
considered for spreading drops by Haley and Miksis [18] and Ehrhard and Davis [14].
Hocking [23] considers using the static contact angle for the dynamic problem. In the
case of complete wetting, a zero contact angle solution is preferred. For the general
lubrication PDE, existence of such “zero contact angle” solutions with slip was proved
rigorously in one space dimension [3, 8]. In this case, the zero contact angle condition
replaces the boundary condition or fixed contact angle condition at the contact line.
A natural question, which we address, is whether the PDE admits traveling wave
solutions with a prescribed nonzero contact angle condition.

In this paper, we consider a thin film being driven up an inclined solid surface
by a surface or Marangoni stress. These driven films have been studied extensively
theoretically, experimentally, and numerically [5, 6, 10, 11, 27, 28, 29, 37, 36]. In
particular, in a series of papers on the precursor model, we found interesting novel
structures for traveling waves and their stability [4, 6, 7]. Our purpose in this pa-
per is to explore the Navier slip model as an alternative to the precursor model for
Marangoni driven films. Among other conclusions, we find that for a given slip length
and film thickness, there is a finite range of contact angles that admit traveling wave
solutions.

In section 2, we give a brief derivation of the fourth order nonlinear PDE governing
the evolution of film height, using the lubrication approximation to the Navier–Stokes
equations for two-dimensional incompressible flow. This derivation shows how the
Navier slip condition enters the thin film PDE. Also in section 2 we show how traveling
wave solutions with a contact line satisfy a third order ODE, in which the traveling
wave speed is determined by the upstream height. The PDE and associated traveling
wave ODE can be used to study contact lines under three scenarios, each of which we
consider in this paper:

I. Flow in which gravity is the only driving force. For example, a layer of fluid
wetting a dry surface as it slides down the surface under the action of gravity.

II. Flow in which the Marangoni force dominates gravity.

III. Flow in which Marangoni force and the force due to gravity are balanced.

The main results of this paper, both analytical (in section 3) and numerical (in
section 4) concern flow in which forces are balanced, but our numerical results add
something to the understanding of the first two scenarios as well.
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In section 3 we analyze the traveling wave ODE near the contact line when
Marangoni forces are present, under the Navier slip condition. Curiously, the leading
order terms of the ODE are independent of the precise form of the Navier slip condi-
tion; we are led to the problem of finding a function y = y(x) (representing the film
height) that is positive for x > 0 and satisfies

yy′′′ = 1, x > 0, y(0) = 0.(1.1)

This equation would appear to fall under the extensive classification of solutions of the
more general third order ODE yny′′′ = 1 contained in the paper of Boatto, Kadanoff,
and Olla [9]. However, we observe that the case n = 1 is special, and we find a
different structure for the solutions. In section 3.1, we find a two-parameter family of
asymptotic solutions

y(x) = ax+
1

2a
x2 log x+ bx2 + h.o.t.,(1.2)

where h.o.t. denotes higher order terms and a > 0 and b are free parameters. We
show how the series can be continued indefinitely, and in section 3.1 we perform a
reduction to a polynomial planar vector field that establishes the dimension of the
solution set.

In section 4 we present various results of numerical integration of the third order
traveling wave ODE. The technique we use is similar to that in earlier studies of
the precursor layer model [6], but here we show how the entire phase space can be
understood by focusing on the structure of stable and unstable invariant manifolds
associated with equilibria. Phase portraits are three-dimensional, since the ODE
is third order, so we visualize invariant manifolds through their intersection with
carefully chosen Poincaré sections.

The numerical solutions are compared with the asymptotic form (1.2) near the
contact line. The numerical results highlight various interesting issues. We find a
finite range of contact angles for each wave speed. This has relevance for the use of a
boundary condition relating contact angle and wave speed, as considered in [14, 18],
or for the case of a fixed contact angle condition, as considered in [31, 38] for singular
slip and in [20, 21, 23] for nonsingular slip. Moreover, at a given speed and at a
given contact angle in this range, there may be several different traveling waves. The
latter property is specific to the case in which gravity and Marangoni effects balance
and is related to the nonconvexity of the flux function in the lubrication model. This
particular effect is well understood for the same problem in which a simpler precursor
film model is used to remove the contact line singularity [6].

2. The lubrication approximation and traveling waves. In section 2.1, we
outline the lubrication approximation and formulate the PDE that governs the motion
of the thin liquid layer, including the Navier slip condition. In section 2.2, we derive
a third order ODE whose solutions are traveling wave solutions of the PDE.

2.1. The thin film PDE. Consider a thin liquid film moving slowly up a flat
solid surface, inclined at an angle α to the horizontal. The film is driven by a constant
surface stress τ , and gravity also acts on the film, as indicated in Figure 2.1. We shall
consider the film to be uniform in the transverse direction. This means that the
transverse velocity is zero, the in-plane velocity (u, v) and pressure p are functions of
x, z, and time t, and the free surface is given by z = h(x, t), where h is a function to
be determined. The lubrication approximation reduces the description of the flow to
a PDE for h(x, t).
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Fig. 2.1. Thin film propagating up an inclined solid surface.

The Navier–Stokes equations for the two-dimensional flow of the figure are as
follows:

(a) ρ(ut + uux + vuz) = −px + µ(uxx + uzz) − ρg sinα,

(b) ρ(vt + uvx + vvz) = −pz + µ(vxx + vzz) − ρg cosα,

(c) ux + vz = 0.

(2.1)

Here, ρ is the density, taken to be constant, consistent with the incompressibility
condition (2.1c), and µ is the viscosity.

In the lubrication approximation, we exploit two small quantities to reduce the
complexity of the equations, keeping only leading order terms but maintaining a
balance between terms that are significant, namely surface stresses and viscous forces.
Let H be a typical thickness of the film, say a maximum thickness. This is assumed
small compared to a typical length scale L along the solid surface. The other small
parameter is the Reynolds number Re = ρUH/µ, calculated with respect to the
thickness length scale, but where U is a typical velocity in the x-direction parallel to
the solid surface.

The lubrication approximation that emerges as the leading order terms consists
of two equations, with unknowns velocity u parallel to the solid surface and pressure
p (the normal velocity v is given separately by the incompressibility condition (2.1c)):

(a) px = µuzz − ρg sinα,
(b) pz = −ρg cosα.

(2.2)

To this system we add boundary conditions at z = 0 and z = h:

(a) p = pA − γhxx on z = h,

(b) µuz = τ on z = h,

(c) k(h)uz = u on z = 0.

(2.3)

Here, pA denotes atmospheric pressure, γ is the coefficient of surface tension, taken
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to be constant, τ is a constant surface stress1 coupled to the flow by the rate of
shear strain appearing on the left-hand side of (2.3b). (Other mechanisms produce a
surface stress, such as gradients in the concentration of a surfactant or airflow over
the surface.) The boundary condition (2.3c) expresses the Navier slip condition, in
which k(h) is a coefficient with dimension of length that becomes essentially zero away
from the contact line (i.e., for h > h0 where h0 is small). As in earlier work on the
Navier slip condition, we take k(h) to be a smooth and positive function; it would be
possible to cut k(h) off at a specified distance from an advancing contact line. For
simplicity we choose only smooth functions k(h) as in [17, 18, 39, 31]. Specific forms
for k(h) will be given later.

To derive an equation for h(x, t), we first integrate system (2.2) using the bound-
ary conditions (2.3) to obtain an expression for u in terms of z and h. Then u is
averaged across the film to get an average velocity Q, expressed entirely in terms of
h and derivatives of h. Finally, this formula for Q is substituted into the equation

ht + (hQ)x = 0

expressing conservation of mass. This procedure, explained in detail and in greater
generality elsewhere [17, 31], leads to the single equation

ht +

{
τ

2µ
q(h) − ρg sinα

3µ
c(h) − ρg cosα

3µ
c(h)hx +

γ

3µ
c(h)hxxx

}
x

= 0,(2.4)

in which

q(h) = h2 + 2hk(h), c(h) = h3 + 2h2k(h)(2.5)

would be quadratic and cubic functions (respectively) were it not for the modifications
from the Navier slip condition.

From (2.4) we can realize the three cases of the introduction:
1. Gravity dominates: τ = 0.
2. Marangoni forces dominate: τ >> ρg sinα.
3. Gravity and Marangoni effects are in balance: τ ∼ ρg sinα.

In each case, a slightly different scaling of the variables leads to nondimensional equa-
tions. We give the details in the third case, rescaling the variables as in [6]. We
introduce length scales H, L and a corresponding time scale T :

h = Hĥ, x = x̂L, and t = T t̂.(2.6)

Balancing the competing convective effects of gravity and Marangoni forces in (2.4)
gives H = 3τ

2 sinαρg . Setting L to be the capillary length on which surface ten-

sion balances the driving forces gives L = ( 2γH2

3τ )1/3 = ( 3γτ
2ρ2g2 sin2 a

)1/3. The time
scale is then chosen to be the one on which all three of these effects balance, T =
2 µ
τ2 ( 4

9τγρg sinα)1/3.
This leads to the equation

ht +

((
h2 +

2

3
hK(h)

)
− (h3 + h2K(h))

)
x

(2.7)

= D
(
(h3 + h2K(h))hx

)
x
− ((h3 + h2K(h))hxxx

)
x
,

1Here, we assume a constant surface tension gradient, proportional to the constant tempera-
ture gradient in experiments [37, 36], in the regime in which surface tension depends linearly upon
temperature.



THIN FILM TRAVELING WAVES 727

where D = ρg cosαTH3

3µL and

K(h) =
3k(Hh)

H
.(2.8)

We remark that D is typically small and is zero for a vertical plane (α = π/2). It will
be convenient to label the flux f(h) on the left-hand side of (2.7),

f(h) =

(
h2 +

2

3
hK(h)

)
− (h3 + h2K(h)),(2.9)

and to use the notation

C(h) = h3 + h2K(h).(2.10)

Then the depth-averaged velocity Q is given by

Q = (f(h) −DC(h)hx + C(h)hxxx)/h,(2.11)

and the PDE (2.7) is

ht + f(h)x = D(C(h)hx)x − (C(h)hxxx)x.(2.12)

In cases 1 and 2, a similar rescaling leads to equations similar to (2.12) but with
different flux functions f(h) (see [31]). Specifically:

1. When gravity dominates, the thin film will be coating by flowing down the
solid surface. Reversing x so that increasing x is in the direction of flow, we obtain
(2.12) with

f(h) = h3 + h2K(h).(2.13)

2. When Marangoni forces dominate, the gravity term in the flux drops out, and
we are left with

f(h) = h2 + hK(h).(2.14)

2.2. Traveling waves. We seek traveling wave solutions of (2.12). These take
the form h(x, t) = h(x−st), where h is a function of the single traveling wave variable
ξ = x− st, and s is the wave speed. Substituting into the PDE, and integrating once,
we obtain (dropping the bars)

E − sh+ f(h) = DC(h)h′ − C(h)h′′′,(2.15)

in which ′ denotes differentiation with respect to ξ, and E is the constant of integra-
tion.

Now we are interested particularly in solutions that have a contact line, at which
h = 0. Since the ODE is autonomous, we can assume the contact line is at ξ = 0.
Upstream (i.e., ξ −→ −∞), we assume the traveling wave approaches a constant
height, with at least the first three derivatives approaching zero. Thus, we have
boundary conditions

h(−∞) = h−, h′(−∞) = h′′(−∞) = h′′′(−∞) = 0, h(0) = 0.(2.16)

Letting ξ −→ −∞, we find E = sh− − f(h−).
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At the other end, letting ξ −→ 0−, we have Q −→ s. (I.e., the average speed
approaches the speed of the traveling wave at the contact line.) Using (2.11), we can
rewrite (2.15) as

−s+Q(h) = E/h.

Letting h −→ 0 leads to the conclusion E = sh− − f(h−) = 0. Thus, the wave speed
s is determined by the upstream height h−:

s =
f(h−)

h−
.(2.17)

In conclusion, the traveling wave satisfies the ODE

C(h)h′′′ = sh− f(h) +DC(h)h′,(2.18)

with boundary conditions

h(−∞) = h−, h(0) = 0.(2.19)

Finally, we discuss the leading order terms at the contact line in (2.18). To do so,
we need to specify the constitutive function k(h) in the Navier slip condition (2.3c).
The form of this function is not decided upon [17, 18], but the idea is that slip should
be confined to a small neighborhood of the contact line, where h is very small. Thus,
k(h) should be chosen so that it is nearly zero unless h is very small. Typically, k(h)
is chosen to be a power of h; in order to satisfy the above requirement, this power
should be negative. Thus we take

k(h) = ηhn−2,(2.20)

with n < 2 and η > 0. In [17], the choice is n = 1. This slip model was derived
by Neogi and Miller for flow over a porous surface [33]. Other choices are possible,
including n = 2 which can model polymer flow [12]. Note that for n > 2, k(h) grows
away from the contact line. With the choice (2.20), the function K(h) defined in (2.8)
becomes

K(h) = βhn−2,(2.21)

with β = 3ηHn−3. In particular, there are two parameters in this relation, namely β
and n.

Now consider the leading order terms as h −→ 0, i.e., near the contact line. We
have C(h) = h3 +h2K(h) ∼ βhn. Asymptotics for f(h) depend on which case we are
considering. In case 1, in which gravity dominates, f(h) = h3 + h2K(h) ∼ βhn. In
case 2 and case 3, the terms from the Marangoni force are higher order. Specifically
in case 3, f(h) = (h2 + 2

3hK(h)) − (h3 + h2K(h)) ∼ 2
3βh

n−1.
Retaining leading order terms in the ODE, we get, in case 1, the equation

βhn−1h′′′ = s+ βhn−1 +Dβhn−1h′.(2.22)

Thus, for case 1, the choice n = 1 leads to a constant coefficient equation. Notably,
there is then no singularity at h = 0.

In cases 2 and 3, we obtain the singular equation

hh′′′ = −2

3
+Dhh′.(2.23)
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At the contact line, we expect h′ to be finite (although it would be reasonable to
consider solutions with a vertical tangent at the contact line). Moreover, the param-
eter D will be considered small or zero. Thus, we take Dhh′ ∼ 0 to leading order.
Note that in arriving at (2.23), we have depended on two important assumptions: (1)
There is a surface driving force τ > 0, and (2) n < 2 in (2.20).

Rescaling ξ in (2.23), and dropping the last term, we are led to consider the initial
value problem

yy′′′ = 1, y(x) > 0 for x > 0, y(0) = 0,(2.24)

in which x = −( 2
3 )1/3ξ and y(x) = h(ξ).

3. Solutions near the contact line. In this section we explore properties of
the initial value problem (2.24). In subsection 3.1 we establish an asymptotic series
solution that has two free parameters, and in subsection 3.2 we reduce the third
order equation to a planar vector field, whose phase portrait proves the existence of
a two-parameter family of solutions.

3.1. Asymptotics. In this subsection, we elaborate on the proposed family (1.2)
of solutions of (2.24) and show how the terms of an asymptotic series can be calculated
systematically. To this end, consider the series2

y(x) = ax+
1

2a
x2 log x+ bx2 + Σ(x),(3.1)

where Σ(x) is expressed as a series with coefficients to be determined:

Σ(x) =

∞∑
k=3

k∑
j=2

dk jx
k(log x)k−j .(3.2)

Note that the series is organized as a sum of terms of increasing order (as x →
0+). We will show that the coefficients dk j may be calculated in the same order:
d32, d33, d42, d43, d44, d52, . . . . In what follows, it will be helpful to adopt the convention
that dkm = 0 whenever m ≤ 1.

Consider a single term zkj(x) = xk(log x)k−j with k ≥ 3, 2 ≤ j ≤ k. Then

z′′′kj = xk−3
{
Ak(log x)k−j +Bkj(log x)k−j−1 + Ckj(log x)k−j−2 +Ak−j(log x)k−j−3

}
,

where the coefficients A,B,C are nonnegative; most importantly Ak > 0 for k ≥ 3.
They are given by the formulae

Ak =

{
k(k − 1)(k − 2) if k ≥ 3,

0 if k ≤ 2,
Bkj =

{
(3k2 − 6k + 2)(k − j) if k > j,

0 if k ≤ j,

Ckj =

{
3(k − 1)(k − j)(k − j − 1) if k ≥ j + 2,

0 if k ≤ j + 1.

2Hocking [19] considered a leading order expansion of this form for a correction to the trailing
edge of Huppert’s solution [24] for flow down an inclined plane.
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Thus

y′′′ =
1

ax
+

∞∑
k=3

k∑
j=2

dk jz
′′′
kj

=
1

ax
+ x−3

∞∑
k=3

k∑
j=2

αk jx
k(log x)k−j ,

(3.3)

where the coefficients αk j are linear combinations of the dkj ’s:

αkj = Akdkj +Bkj−1dkj−1 + Ckj−2dkj−2 +Ak−(j−3)dkj−3.(3.4)

(Recall dkm = 0 if m ≤ 1.)
Now substitute (3.1), (3.3) into (1.1):

[
ax+

1

2a
x2 log x+ bx2 +

∞∑
k=3

k∑
j=2

dk jx
k(log x)k−j




×

 1

ax
+

∞∑
k=3

k∑
j=2

αk jx
k−3(log x)k−j


 = 1.

(3.5)

Equating terms, we get a family of equations for the coefficients dkj (recall the coef-
ficients αkj depend linearly on the d’s):

x log x :
1

2a2
+ aα32 = 0,

x :
b

a
+ aα33 = 0,

(3.6)

xk−2(log x)k−j :

aαkj + 1
2aαk−1j + bαk−1j−1 + 1

adk−1j−1 +
∑

m+p=k+1

∑
n+q=j+1

dmnαpq = 0.
(3.7)

In the final sum, the additional constraints on the indices are implied from (3.5):

m ≥ 3, p ≥ 3, 2 ≤ n ≤ m, 2 ≤ q ≤ p.
In particular, these imply

m ≤ k − 2 and p ≤ k − 2.(3.8)

Also note that there is no contribution from the double sum if k = 4, or when j = 2.
Now from (3.4), we observe that the equation for the coefficient of xk−2(log x)k−j

has a term aAkdkj , and the other terms involve dkm with m ≤ j − 1 (these terms
come from αkj) and dmq with m ≤ k−1, 2 ≤ q ≤ m. Consequently, the equations can
be solved successively for the coefficients dkj in their natural order associated with
terms of increasing order in the asymptotic expansion. Thus, the asymptotic series
can be continued to all orders and defines a two-parameter family of formal solutions
of the ODE (1.1).
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3.2. Reduction to a planar vector field. In this subsection, we reduce the
ODE to a planar vector field that we analyze directly. While this is not a new tech-
nique (see, for example, [9, 40], where similar reductions are performed on other third
order ODEs related to similarity solutions of thin film equations), the real interest
lies in using the planar vector field to identify a family of solutions of the ODE with
the two-parameter family of asymptotic solutions in the previous subsection.

Consider the ODE (1.1):

yy′′′ = 1.(3.9)

Since this equation is autonomous and has a natural scaling invariance (scaling x by
a2 and y by a3 leaves the equation unchanged), we can reduce the equation to a second
order equation that is also autonomous. This is achieved by writing w = y′ and letting
the independent variable be y. Thus, (3.9) becomes the second order equation

yw
d

dy
w
dw

dy
= 1.(3.10)

Now y ddy is the logarithmic derivative, so we redefine the independent variable as
η = log y, leading to

w
d

dη
w
dw

dη
= w2 dw

dη
+ eη.(3.11)

Now we write this equation as a first order system and rescale to make it autonomous.
First let v = w dwdη . Then

w
dv

dη
= eη + vw, w

dw

dη
= v.(3.12)

Now we remove the singularity at w = 0 (or rather send it to infinity) by letting
u = 1/w. Then

du

dη
= −u3v,

dv

dη
= eηu+ v.(3.13)

Finally we scale the variables to make the system autonomous:

U = eη/3u, V = e−2η/3v,

leading to the system

U ′ =
1

3
U − U3V, V ′ = U +

1

3
V.(3.14)

In terms of the original variables, x, y, we have U = y1/3/y′, V = y1/3y′′. The
asymptotic form (1.2) of the solutions approaching y = 0 yields

U ∼ a−2/3x1/3 −→ 0+, V ∼ a−2/3x1/3 log x −→ 0−(3.15)

as x −→ 0+. Note that V/U ∼ log x −→ −∞ as x −→ 0+. Thus we are interested
in solutions of (3.14) approaching the origin as the independent variable η = log y
approaches −∞, with U(η) > 0, V (η) < 0.
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U ’ = U/3 − U3 V
V ’ = U + V/3    
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Fig. 3.1. Phase portrait for system (3.14).

The origin is an equilibrium with a double eigenvalue 1/3, but a single eigenvector
(U, V ) = (0, 1). The phase portrait is shown in Figure 3.1. Note that the saddle point
at V = −3U,U = −3−2/3 in the second quadrant is not relevant to us. The stable
and unstable manifolds correspond to solutions with y −→ ∞ or y −→ 0−. It is
straightforward to prove that the trajectories in the fourth quadrant have a unique
minimum as they cross V = −3U and cross the U axis as shown in the figure. Indeed,
dV/dU = 3 on the U axis and is zero on the line V = −3U . Moreover,

dV

dU
=

U + 1
3V

1
3U − U3V

< 3

and is positive for U > 0, V < 0. Thus, trajectories terminating at any point U1 > 0
on the U axis are monotonically increasing from a point (U0,−3U0) with 0 < U0 < U1

and decrease monotonically to the left of the line V = −3U . However, the V axis is
invariant for the vector field (3.14), so the trajectories are forced into the origin as η
decreases. On every ray V = −AU with A > 3, we have

dV

dU
=

U + 1
3V

1
3U − U3V

> −A.

Consequently, trajectories cross every such ray as they approach the origin, proving
that dV/dU −→ −∞ as η −→ −∞. In fact, neglecting the U3V term as trajectories
approach the origin, we find V ∼ 3U log(U/U0) as U −→ 0+.

This analysis of the fourth quadrant of the vector field proves that there is a
one-parameter family of trajectories parameterized by U0 > 0. The trajectories are
also invariant under translation of η by a constant, since system (3.14) is autonomous.
But η = log y, so this corresponds to multiplying y by a constant, accompanied by the
corresponding scaling of x, according to the natural scale invariance of (1.1). This is
the second parameter that is apparent in the asymptotic series. We have thus proved
the following proposition.
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Proposition 3.1. There is a two-parameter family of solutions of the initial
value problem (1.1).

4. Numerical results. In this section, we show results of numerical simulations
of the full traveling wave ODE in the spirit of [6]. In particular, we illustrate how
solutions corresponding to contact lines relate to the parameters a, b in the asymptotic
expansion derived in section 3.1, but we also explore the two simpler cases 1 and 2,
in which gravity or the Marangoni forces dominate, respectively.

It is convenient to write the third order equation as a first order system, in which
we replace h by u:

u′ = v,
v′ = w,
w′ = g(u, v, s),

(4.1)

where g(u, v, s) = su−f(u)
C(u) +Dv.

The main parameter s is the traveling wave speed. We take D = 0, corresponding
to fluid flowing down a vertical wall. The functions f, C were given in section 2:
Case I (gravity dominates): f(u) = u3 + u2K(u).
Case II (Marangoni force dominates): f(u) = u2 + uK(u).
Case III (gravity and Marangoni force are comparable): f(u) = u2 − u3 +K(u)( 2

3u−
u2).
Recall also the formulae for C and K:

C(u) = u3 +K(u)u2, K(u) = βun−2.(4.2)

In the function K, there are additional parameters β > 0 and n < 2; generally, we
take n = 1 and β = 0.01, but we shall also consider the effect of varying β.

Equilibria of system (4.1) are (u, v, w) = (u, 0, 0), with g(u, 0, s) = 0. I.e.,

f(u) = su.(4.3)

We study all the stable and unstable manifolds of equilibria, their boundaries, inter-
sections, and behavior at u = 0 in order to gain some understanding of the overall
phase portrait.

Computational algorithm. Trajectories for (4.1) are computed using the im-
plicit Adams method in the LSODE package. To compute trajectories along a stable
manifold starting near an equilibrium, we integrate backward in time. As for com-
puting trajectories forward in time along an unstable manifold, this process is stable
until the manifold comes near another equilibrium.

It is convenient and instructive (see [6]) to use a two-dimensional Poincaré section
Σu=const to represent these invariant manifolds. The Poincaré section with u constant
has the property that trajectories cross it transversally, unless v = 0. In particular,
the invariant manifolds intersect Σu in points or curves, depending on whether the
manifold is one- or two-dimensional. In the Poincaré section, we shall easily visualize
when a two-dimensional invariant manifold for one equilibrium is bounded by a one-
dimensional invariant manifold for a different equilibrium.

Transverse intersections of two-dimensional manifolds correspond to structurally
stable heteroclinic orbits between equilibria. In the Poincaré section, these appear as
transverse intersections of curves.
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We are interested in solutions (u, v, w)(ξ) that reach u = 0 at a finite value of
ξ. Specifically, we will say a trajectory (u(ξ), v(ξ), w(ξ)), ξ < ξ0 touches down at
ξ = ξ0 if u(ξ) −→ 0+ as ξ −→ ξ0− and u(ξ) > 0 for ξ < ξ0. Similarly, we will say
(u(ξ), v(ξ), w(ξ)) is unbounded if u(ξ) −→ ∞ as ξ −→ ±∞.

The numerical results were obtained for specific choices of parameters: s =
2/9, D = 0, n = 1. (The choice n = 1 was suggested in [17].) The choice of s
is intended to be representative of the physical solutions of interest. In case I, dif-
ferent choices of β are considered, while in cases II and III, β = 0.01 is taken to be
representative.

4.1. Case I: Gravity dominates. When gravity dominates, (4.1) has the cubic
polynomial flux function

f(u) = u3 + βu.(4.4)

Note that (4.1) has the symmetry property that it is unchanged by changing the sign
of u and ξ. (Then w changes sign, but v does not.)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.3
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-0.1
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u3+ β   u 
su          

B 

M 

Fig. 4.1. f(u) and su.

In Figure 4.1, we show (4.3) for β = 0.01. The equation has two solutions corre-

sponding to equilibria of (4.1), namely u = ±
√

190
30 . (Note that the solution u = 0 is

not an equilibrium.) The associated equilibria are

B =

(
−
√

190

30
, 0, 0

)
, M =

(√
190

30
, 0, 0

)
.

Although B is not physical since it corresponds to negative u, it is nonetheless helpful
to consider the associated invariant manifolds.

Linearizing around M , we find the system has two complex conjugate eigen-
values with positive real part (corresponding to a two-dimensional unstable mani-
fold denoted WU (M)), and one real, negative eigenvalue (corresponding to a one-
dimensional stable manifold denoted WS(M)). Correspondingly, the equilibrium B
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Fig. 4.2. Case I with β = 0.01. (a) Σ0. (b) Trajectories with a contact line. Shown are only
the values at the first intersection with Σ0.

has a two-dimensional stable manifold WS(B) and a one-dimensional unstable man-
ifold WU (B).

As described in [6, 30], the nature of the two-dimensional manifolds changes from
node to focus as the parameter D varies away from zero. In discussing the phase
portraits here (with D = 0), we consider the focus case only, for which the two
associated eigenvalues are complex conjugates. This implies that, near M , solutions
along the unstable manifold spiral out. Thus to compute the unstable manifold, we
compute trajectories starting from a locus of points along a straight line through M
in the tangent plane.

Global picture of phase space. We are interested in how trajectories touch
down, so we study the Poincaré section Σ0 at u = 0. By symmetry, the invariant man-
ifolds of B and M are reflections of each other across the plane u = 0. The manifolds
WU (B) and WS(M) are one-dimensional, so they intersect Σ0 in isolated points, if
at all. Each one-dimensional invariant manifold has two connected components, or
branches, separated by the equilibrium. Referring to Figure 4.2(a), representing the
Poincaré plane u = 0, for β = 0.01, we observe that one branch of WU (B) intersects
Σ0 twice: first at (u, u′, u′′) = (0, 1.06, 3.9), then at (0,−60.0,−12.6).3 The other
branch is unbounded at u = −∞ and does not intersect Σ0. Similarly, one branch
of WS(M) intersects Σ0 at (u, u′, u′′) = (0, 1.06,−3.9), while the other branch is
unbounded at u = ∞ and does not intersect Σ0.

The two-dimensional manifolds WU (M) and WS(B) intersect Σ0 in curves (see
Figure 4.2(a)). WU (M) is bounded on both ends by the same branch ofWU (B). Near
this boundary WU (M) wraps around WU (B) an infinite number of times. The spiral
of WU (M) around the first intersection of WU (B) near (0, 1.06, 3.9) can be seen in
Figure 4.2(a). By the time WU (B) intersects the second time near (0,−60.0,−12.6),
the spiral of WU (M) has become so elongated that it cannot be resolved at this scale.

The points P on Σ0 of physical interest are those which represent trajectories
from M that hit u = 0 for the first time at P . These correspond to traveling wave

solutions which asymptote to u =
√

190
30 at ξ = −∞ and have a contact line. Although

trajectories continue into negative u values, solutions with u < 0 are no longer phys-

3Here and throughout this section, we give the numerical values of intersection points to one or
two decimal places.
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Fig. 4.3. Minimum slope at u = 0 as a function of β, case I.

ical. All trajectories in WU (M) hit u = 0. The curve of points corresponding to
first intersections are shown in Figure 4.2(b). Note that one end of the curve ter-
minates at u′ = 0. This corresponds to a trajectory that turns around at u = 0.
This same trajectory eventually winds around to intersect Σ0 again, this time with a
touchdown of slope u′ = −130.1, corresponding to the other end of the curve shown
in Figure 4.2(b). For trajectories inside this orbit, we obtain the finite range of touch-
down slopes, spanning −130.1 ≤ u′ ≤ 0. Such large slopes may of course take the
model outside its range of validity. However, the slopes here are dimensionless, and
may correspond in dimensional variables within the range of the model. This issue is
examined in the context of thin film rupture in the paper of Zhang and Lister [42].

Dependence of the range of contact slopes on β. In Figure 4.3, we show
how the minimum contact angle varies with the parameter β (from the Navier slip
condition (4.2)) in the range 0 < β < 2/9. Keeping s = 2/9, D = 0, and n = 1
fixed, the phase space of solutions is topologically equivalent for 0 < β < 2

9 . As

β → 0, M and B approach (±
√

2
3 , 0, 0). As β increases from 0, M and B move closer

together until all solutions of (4.3) vanish at β = 2
9 , where f ′(0) = s. For all β in

this range, the maximum contact slope is zero. The minimum contact slope decreases
with decreasing β, as seen above. The plot shows computed values for the minimum
value of u′ at u = 0 for β ranging from 0.001 to 0.22.

4.2. Case II: Marangoni convection dominates. Now consider (4.1) when
the Marangoni convection term dominates. In this subsection we consider only β =
0.01; in this case and in case III we compute solutions only in the physical range
u ≥ 0. The new flux function is quadratic:

f(u) = u2 + β.(4.5)

For different values of s, the ODE will have zero, one, or two equilibria. The case
with s = 2/9 is shown in Figure 4.4. The two equilibria are

B =

(
10 −√

19

90
, 0, 0

)
, M =

(
10 +

√
19

90
, 0, 0

)
.

M has a two-dimensional unstable manifold WU (M) and a one-dimensional sta-
ble manifold WS(M). B has a two-dimensional stable manifold WS(B) and a one-
dimensional unstable manifold WU (B).
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Fig. 4.4. f(u) and su, case II, with β = 0.01.

The dynamics at the contact line are now fundamentally different than in the
gravity dominated case. The flux function makes the differential equation (4.1) singu-
lar at u = 0. Note that if (u, v, w) touches down, then w = u′′ will become unbounded
in finite time, so an adaptive time step procedure such as the one we use is essential to
capture detailed behavior near u = 0. The most important difference from the gravity
dominated case is that now trajectories cannot be computed beyond u = 0. Thus,
trajectories generically fall into two cases: those which touch down in finite time and
those which escape to u = ∞. Between these two cases are heteroclinic orbits that
approach equilibria as ξ −→ ±∞.

Global picture of phase space. Since u′′ is unbounded at u = 0, it is not
possible to study Σ0. Instead, we choose the section Σ0.1 between B and M . The in-
formation about boundaries and dimensions can be read off as before. It is necessary,
however, to do further computations to find the range of contact slopes. Intersections
of the two-dimensional manifolds again correspond to heteroclinic orbits between equi-
libria, representing traveling wave solutions with a precursor layer, as in [6].

Both branches of WS(M) are unbounded. One does not pass Σ0.1. The other
branch intersects Σ0.1 at (u, u′, u′′) = (0.1, 0.16,−0.43), narrowly avoids u = 0, and
intersects again at (u, u′, u′′) = (0.1,−2.00, 20.71) before heading to u = ∞. In con-
trast, both branches of WU (B) touch down. One branch does not intersect Σ0.1. The
other intersects first at (0.1, 0.15, 0.52), then at (0.1,−1.72,−2.02) before touching
down. These intersection points are labeled in Figure 4.5.

The two-dimensional manifolds WU (M) and WS(B) intersect transversally in
a single heteroclinic orbit from M to B. Hence the two branches of WU (B) are
boundaries of WU (M). The curve WU (M) shown in the Poincaré section of Fig-
ure 4.5 represents trajectories that can intersect Σ0.1 several times. All trajectories
in WU (M) touch down, with a finite range of contact angles. For the specific pa-
rameters β = 0.01, s = 2/9, we find this range to be −2.436 < u′ < −0.464. Note
that, unlike in the gravity driven case, there are no trajectories with contact slope
arbitrarily close to 0.

4.3. Case III: The full equation. We now consider the full equation with
β = 0.01 and

f(u) = u2 − u3 + β

(
2

3
− u
)
.(4.6)
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Fig. 4.6. f(u) and su, case III, β = 0.01.

See [6] for a parallel discussion of the precursor model case without Navier slip. The
flux is now nonconvex, which means the ODE may have one, two, or three equilibria,
depending on the value of s. For s = 2/9, (4.3) has three solutions. We will find
that phase space becomes correspondingly more complicated. The three equilibria
(see Figure 4.6) are labeled

B = (1/30, 0, 0), M = (3/10, 0, 0), T = (2/3, 0, 0),

for bottom, middle, and top. M has a two-dimensional unstable manifoldWU (M) and
a one-dimensional stable manifold WS(M). The other equilibria B and T have two-
dimensional stable manifoldsWS(B),WS(T ) and one-dimensional unstable manifolds
WU (B),WU (T ).

As in the case where Marangoni convection dominates gravity, trajectories in the
invariant manifolds either will be heteroclinic orbits, unbounded, or will touch down.
There is a Lyapunov function that prevents periodic or homoclinic orbits (cf. [6]).
Solutions cannot be computed past u = 0 since the ODE becomes singular. In what
follows, we describe results with respect to the Poincaré section Σ0.2 between B and
M at u = 0.2.
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Fig. 4.7. Case III. (a) Σ0.2. (b) Blow-up of small box in (a).

The one-dimensional manifolds. WU (B), WU (T ), and WS(M) are the one-
dimensional invariant manifolds. One branch of WU (B) touches down and does not
pass through u = 0.2. The other branch becomes unbounded in u and passes Σ0.2

at (0.2, 0.739, 2.120). WU (T ) exhibits similar behavior, with an unbounded branch
that does not pass through Σ0.2 and a branch that touches down and hits Σ0.2 at
(0.2,−0.385,−0.164). Both branches of WS(M) touch down. One branch, WS

1 (M),
passes through Σ0.2 at (0.2, 0.169,−0.324). The other, WS

2 (M), passes through at
(0.2, 2.264,−1.503).

The unstable manifold of M. The manifold WU (M) crosses WS(B) in three
orbits, shown as intersection points in Figure 4.7(b). Note also that WU (M) wraps
infinitely many times around bothWU (B) andWU (T ). These spirals indicate connec-
tions from M to both T and B. Connections to B are already evident. Connections
to T would appear as an intersection of WU (M) and WS(T ) in any Poincaré section
placed between M and T .

The structure of the intersection of WU (M) with WS(B) is shown in more detail
in Figure 4.7(b). WU (M) intersects WS(B) three times. Each of these intersections
I1, I2, and I3 corresponds to a heteroclinic orbit from M to B. Furthermore, WS(B)
divides the qualitative behavior of trajectories on WU (M). All trajectories on the
same side asWU (T ), i.e., between I1 and I2 and between I3 andWU (T ), touch down.
All trajectories on the other side, i.e., between WU (B) and I1 and between I2 and I3,
are unbounded.
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The stable manifold of T. WS(T ) also has two boundaries, which are the two
branches of WS(M). The spiral at WS

1 (M) can be seen clearly, while the spiral at
WS

2 (M) is four orders of magnitude longer than it is wide, and requires corresponding
resolution to be seen.

The stable manifold of B. Each trajectory on the stable manifold of B (which
hits Σ0.2) comes out from B = (1/30, 0, 0), passes through u = 0.2, turns around, and
hits u = 0.2 again before touching down. Thus each trajectory appears as two points
on Σ0.2. WS(B) is split by WU (M) into four distinctly behaving sheets which we
label C1, C2, C3, and C4.

The sheet C1 approaches the heteroclinic orbit I1 at one end and wraps around
WS

1 (M) at the other. The sheet wraps back on itself around (0.2, 0,−1). Each
trajectory has one point between I1 and (0.2, 0,−1) (where u is increasing) and one
point between (0.2, 0,−1) and WS

1 (M) (where u is decreasing). Trajectories which
pass very close to I1 going out also pass very close to WS(M) coming back. In fact,
C1 spirals around WS

1 (M) infinitely many times.
Outgoing trajectories in C2 are bounded by I1 and I3. The trajectories which

pass very close to I1 spiral around WS
2 (M) on their second pass, and the trajectories

which pass very close to I3 spiral around WS
1 (M) when they return. Trajectories

between these two boundaries are very close to WS(T ) on their return.
Outgoing trajectories on C3 are bounded by I3 and I2. Trajectories that pass

near both of these orbits on the way out spiral tightly around WS
2 (M) on their way

back. Trajectories between the two boundaries form a thin loop that follows WS(T )
very closely, and stretches down to (0.2, 2.84,−1.86).

Finally, outgoing trajectories on C4 are bounded on one side by I2. The trajec-
tories which pass near to I2 spiral tightly around WS

1 (M) on their return journey.
Trajectories which pass further away from C1 return in a line that follows WS(T )
and eventually stretches beyond it.

Note that both WS
1 (M) and WS

2 (M) have quadruple spirals, that is, four sheets
wrapping around them infinitely many times. WS

1 (M) has one boundary each of
WS(T ), C1, C2, and C4, whereas WS

2 (M) has one boundary each from WS(T ) and
C2, and two from C3.

4.4. Connection to the asymptotics. In the computations for case III, for a
given wave speed s, we find a one-parameter family of trajectories that touch down.
Here we relate this one-parameter family to the two-parameter family of local touch
down solutions given by the asymptotics of section 2. Specifically for s = 2/9, we find
a finite range of values for the parameter a in the asymptotic solution.

With the scaling ξ− ξ0 = −( 2
3 )1/3x of section 2, the asymptotic expansion about

a point ξ = ξ0 of touchdown becomes

h(ξ) = −a
(

2

3

) 1
3

η +
1

2a

(
2

3

) 2
3

η2 log

(
−
(

2

3

) 1
3

η

)
+ b

(
2

3

) 2
3

η2 + h.o.t.,(4.7)

in which η = ξ−ξ0 < 0. In particular, the contact slope is given by v(ξ0) = −a ( 2
3

)1/3
.

We can read off the limiting value of v(ξ) as u approaches zero and thus obtain the
value of a. Corresponding values for b also come from the form (1.2). Specifically, we
find

w = u′′ =
1

a

(
2

3

) 2
3

log

(
−
(

2

3

) 1
3

η

)
+

3

2a

(
2

3

) 2
3

+ 2

(
2

3

) 2
3

b+ h.o.t.(4.8)
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Fig. 4.9. Asymptotic parameters a and b.

Thus,

e

(
a( 3

2 )
2/3

w(ξ)
)
≈ −

(
2

3

)1/3

e(
3
2+2ab)(ξ − ξ0).(4.9)

Consequently, e(a(
3
2 )

2/3
w(ξ)) approaches a constant slope m as u approaches zero.

Computing this value of m from the calculated trajectory, and the parameter a as
above, the expression

m = −
(

2

3

)1/3

e(
3
2+2ab)(4.10)

determines b. In Figure 4.8, we show a sample comparison between the first three
terms of the asymptotic expansion with the corresponding numerical solution of the
full equation, with parameters a, b calculated as described above.

Range of a and b. Plotting the two asymptotic parameters a and b against each
other, for all trajectories on WU (M) which touch down, gives a curve in the (a, b)
plane. Consider the close up Poincaré section of the intersection between WU (M)
and WS(B). In Figure 4.9, we show this curve for points on WU (M) between I1 and
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I2 corresponding to trajectories that touch down in finite time. Points adjacent to I1
and I2 correspond to identical values of a and b, in fact, the same values as for the
branch of WU (B) that touches down. The curve in Figure 4.9 varies smoothly but
very nearly doubles back on itself. Trajectories near the heteroclinic orbits approach
B and then shoot off along WU (B).

The points along WU (M) from I3 to WU (T ) give another one-parameter family
of solutions. Their a, b values range continuously from the a, b value of the branch of
WU (B) that touches down (since I2 is another heteroclinic orbit) to the a, b value of
the branch of WU (T ). This second curve closely follows the first one.

5. Discussion. In this section, we discuss the significance of the results for the
traveling wave problem and the moving contact line. The most striking conclusion
from our numerical results is that for each of the three problems considered, there is
a limited range of contact angles. This particular observation has not been noted in
previous studies of the traveling wave problem with slip [31, 38] for the case of gravity
driven films. For the Marangoni cases II and III the effect is even more pronounced;
the range does not include a zero contact angle, in contrast to well-known results for
(2.12) without convection (i.e., f = 0) for both traveling waves [9] and weak solutions
of the full PDE [8, 3]. For example, in case I, Figure 4.2(b), for each contact slope u′

in the range (−130.1, 0], there is a unique traveling wave solution that touches down
with that slope. In contrast, in case III, not only are there no traveling waves that
touch down with zero slope, but for each slope in the range there can be more than
one traveling wave with that touchdown slope, as demonstrated in Figure 4.9.

In experiments, the contact line speed is often observed to be related to the
dynamic contact angle or the slope of the film as the thickness approaches zero.
For the model, this would result in a boundary condition relating the contact angle
to the speed of the wave. Since the upstream thickness is related to the speed s
via (2.17), for traveling waves, such a boundary condition becomes a relationship
between upstream thickness and contact angle. In case I, the boundary condition
would select a unique traveling wave, provided the contact slope is in the admissible
range. However, in case III, such a law does not in general select a unique traveling
wave. A similar nonuniqueness was found for the precursor model [6] in the case of
gravity and opposing Marangoni stress.

There is also the issue of whether the contact angle should be related to the slope
of the free surface at zero height, or to an observed slope, that might be taken to
be the maximum slope, generally slightly away from the contact line itself. There is
much discussion of this issue in the literature (see [25, 26] and the references therein).
The Navier slip condition is an attempt to incorporate in a continuum model the
physical effects at the molecular scale. For this reason, the asymptotic results apply
strictly at the contact line. As in [25], it would be possible to carry out matched
asymptotics to relate the asymptotic solution at zero height to solutions of the full
problem away from a small neighborhood of the contact line. In this paper, we have
instead compared numerical solutions with the asymptotic solution; the discussion
above is based on this comparison.

Case III is particularly interesting because of the nonconvex flux and the con-
nection to compressive and undercompressive waves discussed in [6]. The notion of
compressive and undercompressive carries over to this paper in the following way: we
call trajectories from M that touch down compressive traveling waves. If the trajec-
tory from T touches down, we refer to it as an undercompressive wave. Unlike the
precursor model in [6], we do not have characteristics ahead of the wave, hence these
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names are used to distinguish between cases where characteristics from the bulk film
go into the contact line (compressive) or come out of the contact line (undercompres-
sive). In the former case, information from the bulk can influence the contact line. In
the latter case, information from the contact line is carried into the bulk.

Note that there is a range of speeds for which we have three equilibria B, M , and
T . We conjecture that for speeds in an interval within this range, one branch of the
unstable manifold from T touches down to u = 0. Each such trajectory will have a
touchdown angle. It would be interesting to know if a given boundary condition at
the contact line selects a unique undercompressive wave.

It would be interesting to consider the traveling waves that touch down in the
context of the dynamic free boundary problem for the PDE (2.12). We expect that
the structure of case III is as rich as that for the precursor model [6, 4]. The contact
line raises a new issue: that of how to treat the free boundary for the full PDE. The
full nonlinear dynamics have not been explored, with the exception of [35], in which
a special case of the PDE without convection was studied.
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Schaeffer.

REFERENCES

[1] W. D. Bascom, R. L. Cottington, and C. R. Singleterry, Dynamic surface phenomena in
the spontaneous spreading of oils on solids, in Contact Angle, Wettability and Adhesion,
F. M. Fowkes, ed., American Chemical Society, Washington, DC, 1964, pp. 355–379.

[2] E. Beretta, J. Hulshof, and L. A. Peletier, On an ODE from forced coating flow, J.
Differential Equations, 130 (1996), pp. 247–265.

[3] E. Beretta, M. Berstch, and R. Dal Passo, Nonnegative solutions of a fourth order non-
linear degenerate parabolic equation, Arch. Ration. Mech. Anal., 129 (1995), pp. 175–200.

[4] A. Bertozzi, A. Münch, M. Shearer, and K. Zumbrun, Stability of compressive and under-
compressive thin film travelling waves, European J. Appl. Math., 12 (2001), pp. 253–291.

[5] A. L. Bertozzi, A. Münch, X. Fanton, and A. M. Cazabat, Contact line stability and
‘undercompressive shocks’ in driven thin film flow, Phys. Rev. Lett., 81 (1998), pp. 5169–
5172.

[6] A. L. Bertozzi, A. Münch, and M. Shearer, Undercompressive shocks in thin film flows,
Phys. D, 134 (1999), pp. 431–464.

[7] A. L. Bertozzi and M. Shearer, Existence of undercompressive traveling waves in thin film
equations, SIAM J. Math. Anal., 32 (2000), pp. 194–213.

[8] A.L. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: Regularity
and long time behavior of weak solutions, Comm. Pure Appl. Math., 49 (1996), pp. 85–123.

[9] S. Boatto, L. Kadanoff, and P. Olla, Travelling wave solutions to thin film equations,
Phys. Rev. E, 48 (1993), p. 4423.

[10] J. B. Brzoska, F. Brochard-Wyart, and F. Rondelez, Exponential growth of fingering
instabilities of spreading films under horizontal thermal gradients, Europhys. Lett., 19
(1992), pp. 98–102.

[11] A. M. Cazabat, F. Heslot, S. M. Troian, and P. Carles, Finger instability of this spreading
films driven by temperature gradients, Nature, 346 (1990), pp. 824–826.

[12] P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys., 57 (1985), p. 827.
[13] E. B. Dussan V and S. Davis, On the motion of a fluid–fluid interface along a solid surface,

J. Fluid Mech., 65 (1974), pp. 71–95.
[14] P. Ehrhard and S. H. Davis, Non-isothermal spreading of liquid drops on horizontal plates,

J. Fluid. Mech., 229 (1991), pp. 365–388.
[15] S. Goldstein, ed., Modern Developments in Fluid Dynamics, Vol. 2, Dover, New York, 1965.
[16] A. A. Golovin, B. Y. Rubinstein, and L. M. Pismen, Effect of van der waals interaction

on the fingering instability of thermally driven thin wetting films, Langmuir, 17 (2001),
pp. 3930–3936.

[17] H. P. Greenspan, On the motion of a small viscous droplet that wets a surface, J. Fluid Mech.,
84 (1978), pp. 125–143.



744 R. BUCKINGHAM, M. SHEARER, AND A. BERTOZZI

[18] P. J. Haley and M. J. Miksis, The effect of the contact line on droplet spreading, J. Fluid
Mech., 223 (1991), pp. 57–81.

[19] L. Hocking, Spreading and instability of a viscous fluid sheet, J. Fluid Mech., 221 (1990),
pp. 373–392.

[20] L. M. Hocking, A moving fluid interface on a rough surface, J. Fluid Mech., 76 (1976),
pp. 801–817.

[21] L. M. Hocking, A moving fluid interface. Part 2. The removal of the force singularity by a
slip flow, J. Fluid Mech., 79 (1977), pp. 209–229.

[22] L. M. Hocking, The spreading of a thin drop by gravity and capillarity, Quant. J. Mech. Appl.
Math., 36 (1983), pp. 55-69.

[23] L. M. Hocking, Rival contact-angle models and the spreading of drops, J. Fluid. Mech., 239
(1992), pp. 671–681.

[24] H. Huppert, Flow and instability of a viscous current down a slope, Nature, 300 (1982),
pp. 427–429.

[25] S. Kalliadasis and H.-C. Chang, Apparent dynamic contact angle of an advancing gas-liquid
meniscus, Phys. Fluids, 6 (1994), pp. 12–23.

[26] S. Kalliadasis and H.-C. Chang, Dynamics of liquid spreading on solid surfaces, Ind. Eng.
Chem. Res., 35 (1996), pp. 2860–2874.

[27] D. E. Kataoka and S. M. Troian, A theoretical study of instabilities at the advancing front
of thermally driven coating films, J. Coll. Int. Sci., 192 (1997), pp. 350–362.

[28] D. E. Kataoka and S. M. Troian, Stabilizing the advancing front of thermally driven climbing
films, J. Coll. Int. Sci., 203 (1998), pp. 335–344.

[29] V. Ludviksson and E. N. Lightfoot, The dynamics of thin liquid films in the presence of
surface-tension gradients, Am. Inst. Chem. Engrs. J., 17 (1971), pp. 1166–1173.

[30] A. Münch, Shock transitions in Marangoni-gravity driven thin film flow, Nonlinearity, 13
(2000), pp. 731–746.

[31] A. Münch and B. Wagner, Numerical and asymptotic results on the linear stability of a thin
film spreading down a slope of small inclination, European J. Appl. Math., 10 (1999),
pp. 297–318.

[32] C. Navier, Memoire sur les lois du mouvement des fluids, Memoires de l’Academie Royale des
Sciences de l’Institut de France, 6 (1823), pp. 389–440.

[33] P. Neogi and C. A. Miller, Spreading kinetics of a drop on a rough solid surface, J. Coll.
Int. Sci., 92 (1983), pp. 338–349.

[34] A. Oron, S. H. Davis, and S. G. Bankoff, Long-scale evolution of thin liquid films, Rev.
Mod. Phys., 69 (1997), pp. 931–980.

[35] F. Otto, Lubrication approximation with prescribed nonzero contact angle, Comm. Partial
Differential Equations, 23 (1998), pp. 2077–2164.

[36] M. Schneemilch and A. M. Cazabat, Shock separation in wetting films driven by thermal
gradients, Langmuir, 16 (2000), pp. 9850–9856.

[37] M. Schneemilch and A. M. Cazabat, Wetting films in thermal gradients, Langmuir, 16
(2000), pp. 8796–8801.

[38] M. A. Spaid and G. M. Homsy, Stability of Newtonian and viscoelastic dynamic contact
angles, Phys. Fluids, 8 (1996), pp. 460–478.

[39] E. O. Tuck and L. W. Schwartz, A numerical and asymptotic study of some third-order or-
dinary differential equations relevant to draining and coating flows, SIAM Rev., 32 (1990),
pp. 453–469.

[40] O. V. Voinov, Inclination angles of the boundary in moving liquid layers, Zh. Prikl. Mekh.
Tekh. Fiz., 2 (1977), pp. 92–99.

[41] M. B. Williams and S. H. Davis, Nonlinear theory of film rupture, J. Coll. Int. Sci., 90 (1982),
pp. 220–228.

[42] W. W. Zhang and J. R. Lister, Similarity solutions for van der Waals rupture of a thin film
on a solid substrate, Phys. Fluids, 11 (1999), pp. 2454–2462.


