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Abstract

We study a finite-difference discretization of an ill-posed nonlinear parabolic partial differential equation. The PDE is the
one-dimensional version of a simplified two-dimensional model for the formation of shear bands via anti-plane shear of a
granular medium. For the discretized initial value problem, we derive analytically, and observed numerically, a two-stage
evolution leading to a steady-state: (i) an initial growth of grid-scale instabilities, and (ii) coarsening dynamics. Elaborating
the second phase, at any fixed time the solution has a piecewise linear profile with a finite number of shear bands. In this
coarsening phase, one shear band after another collapses until a steady-state with just one jump discontinuity is achieved.
The amplitude of this steady-state shear band is derived analytically, but due to the ill-posedness of the underlying problem,
its position exhibits sensitive dependence. Analyzing data from the simulations, we observe that the number of shear bands
at timer decays liker~1/3. From this scaling law, we show that the time-scale of the coarsening phase in the evolution of this
model for granular media critically depends on the discreteness of the model. Our analysis also has implications to related
ill-posed nonlinear PDEs for the one-dimensional Perona—Malik equation in image processing and to models for clustering
instabilities in granular materials. © 2001 Elsevier Science B.V. All rights reserved.
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1. Background

The degenerate parabolic PDE:

v =div (R&) , (1.1)
ot |Vl

in which R is a rotation matrix, arises from a simplified model of the velocity field of a sheared granular material
[33]. This equation is ill-posed, a property typical of continuum models of granular media [25,31,32,34]. To study
the dynamics of this model, in this paper, we analyze one partitiniltedifference approximation of the PDE (1.1).

More precisely, we discretize in space, and study the resulting system of ODEs, which we reftetdisgete

model. This model is a form of regularization of Eq. (1.1); the discrete model is well-posed, mollifying instabilities
at the highest frequencies.
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Fig. 1. One-dimensional evolution in Eq. (1.1): (a) initial data, (b) short-time behavior, (c) long-time evolution to the steady-state shear band.

The simulations show that amplification of perturbations at short wavelengths lead quickly to small-amplitude
discontinuities, see Fig. 1b. This short-time behavior is followed by a gradaedening and long-time evolution
to a steady-state. The steady-state has a single discontinuity that we referdweastzand [9], see Fig. 1c. The
time-scale for the coarsening dynamics phase of the evolution diverges as the megtwseal®. Thus, strictly
speaking, in the continuum limit, no evolution occurs! In other words, the discreteness of the finite-difference model
is essential to the dynamics of this system. Implications of this result for granular flows will be discussed further in
a subsequent paper.

The behavior of this nonlinear ill-posed equation should be contrasted with the behavior of ill{pwsed
equations where short wavelength disturbances are simply amplified catastrophically. Correspondingly, solutions of
difference approximations of linear ill-posed equations diverge in every norm, as the mesh spacing approaches zerc
For our discrete model of Eq. (1.1), & — 0, the sequence of solutions of the difference equations converges
in L2, but because of ill-posedness it blows-upHr. The divergence i1 is a consequence of the very rapid
development of “infinitesimal discontinuities” in the solution. These observations on the dynamics in the system
are fully developed in Section 6.

The linear ill-posedness of the time-dependent equations is related to the property that the steady-state equation
are hyperbolic. The steady-state equations are well-known to support shock waves [22]. In nonlinear continuum
descriptions of granular materials, linear ill-posedness means that initial value problems are sensitive to small
perturbations, but it also provides a mechanism for the formation of fine-scale localized structures such as sheal
bands and shocks.

PDE models for granular flow are the result of treating the material as a continuum, allowing dynamics at all
wavelengths, whereas in fact wavelengths much shorter than the grain size of particles in the granular media have
no physical significance. Regarding the finite-difference mesh parametegs being on the order of the grain
size, we effectively replace the continuum description by a discrete model that may more faithfully represent the
range of wavelengths relevant for granular flow. The discrete model is analogous to discrete mechanical models
whose continuum limit yields a continuum description, as has been used in constructing continuous models of high
density discrete mechanical systems [26—28]. In the context of the present paper, numerical discretization of the
PDE model resembles the discreteness of the real system. However, additional physical considerations would be
needed to fully represent the discreteness of the medium. Our discretization of the PDE gives a first model that is
suggestive of the additional physics needed, while retaining the physics at the macroscopic level.

Ill-posed nonlinear parabolic equations also arise in population dynamics in mathematical biology [21,23], edge
enhancement in image processing [1,2,5,8,20], and other problems in granular media flows [10,19,35,36]. Since,
the early work of Perona and Malik [24], ill-posed nonlinear diffusion equations have been used to produce en-
hancement of edges in digitized images by selective amplification of intensity gradients via backward diffusion.
These models have attracted a lot of attention in the engineering and mathematical literature [20], and there are
still many mathematical open questions. While Eq. (1.1) has a very different motivation than the Perona—Malik
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models, it shares many structural similarities, and some of our results may have further implications for image
processing. Recent studies [10,36] of clustering instabilities (also called inelastic collapse) in dilute granular gases
[19] have yielded models with nonmonotone flux functions and discrete diffusive coupling in space. The discrete
model considered here has some qualitative features similar to the clustering dynamics observed in those papers.

1.1. Outline of paper

The remainder of this paper is organized as follows. In Section 2, we formulate the PDE model in one and two
space dimensions, and give preliminary information concerning the discrete model. Specifically, in Section 2.1, we
discuss the PDE in the context of anti-plane shear, and specify the nature of the linear ill-posedness. In Section 2.2,
we consider plane wave perturbations of uniform shear. We show that the resulting PDE in one space variable and
time has the character of a backward—forward heat equation. In Section 2.3, we write down the discrete model, and
show that solutions remain bounded globally in time, and uniformly in mesh spaaing

In Section 3, we describe all equilibrium solutions of the discrete model. Apart from the trivial solution, cor-
responding to uniform shearing, equilibrium solutions have one or more finite jumps (that persist under mesh
refinement), which we call shocks or shear bands. In Section 4, we show that the trivial solution and single shear
band solutions are the only possible stable equilibria. We characterize precise conditions under which these equilib-
ria are in fact stable. Multiple shock solutions are shown to be unstable, a property that helps explain the coarsening
exhibited in Fig. 1. The proof is based on identifying a Liapunov function for the discrete model, and exploring the
nature of its critical points.

In Section 5, we describe detailed dynamic simulations like those of Fig. 1. In Section 6, we discuss the continuum
limit Ax — 0, demonstrating the existence, via numerical experiments, of a scaling law for the evolution of shear
bands in the coarsening process. Finally, in Section 7, we analyze the coarsening that occurs in the intermediate
dynamics. Specifically, in Section 7.1, we analyze the coarsening from a solutio& wgiilocks to a solution with
K — 1 shocks, wher is large. In Section 7.2, we formulate a reduced discrete model that describes the evolution
of the shocks in isolation from the smooth part of the solution. The comparison of predictions from the reduced
model and the full model helps to justify our explanation of how the coarsening process takes place.

2. Formulation of the problem
2.1. The continuous two-dimensional model

The dependent variable= v(x, y, t) in Eq. (1.1) may be thought of as the velocity in thdirection in a block
of material undergoing anti-plane shearing. The equation for conservation of momentum equates acceleration,
9,v, at constant density (normalized to unity), with the divergence of stkes$, Modeling stress by the vector
7T = RVv/|Vu|, in which R is the matrix representing a rotation counter-clockwise through a constantsangle

cosy —Sina
R = ( ) ) , (2.2)
sine  cosa
with 0 < a < 7/2, we arrive at Eq. (1.1). This model and related equations are studied in a series of papers
[3,4,6,12,13,25,31-34]. Further details relating this constitutive relation to the full stress tensor and to properties of
a perfectly plastic material are given in [33]. Eq. (1.1) is a special case of the model in [33] subject to constant yield

strength, specificallyr| = 1. The following proposition, adapted from [33], identifies the ill-posedness exhibited
by Eqg. (1.1). Consider a specific solutiogl(x, y, ) of Eq. (1.1). If we linearize the equation abagtand freeze
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coefficients of the linearized equation at a paing, yo, 70), the resulting equation admits solutions in the form
exp{At + i(E1x + &2y)}. The equation relating to § = (&1, &) is the dispersion relation for the linear PDE.
For this problemy is real, and we say the equationiisposed if A is not uniformly bounded above |§1 The
proposition describes the nature of this ill-posedness, identifying a wedge of direEcMﬂrﬁn which x is positive
and unbounded, approaching infinity quadraticallﬁ.in

Proposition. A solution vg(x, y, t) of Eq. (1.1)islinearly ill-posed in a neighborhood of (xg, yo, fo) with respect
to the exponential perturbation exp{i(§1x + &2y)} if & (or —§&) liesin the sector

arg(Vuo) < arg(€) < arg(Vug) + « (2.2)

where

a , Y0,
arg(Vug) = arctan<M> )

dxvo(xo, Yo, 0)
Note that the upper bound in Eq. (2.2) is the argument of the rotated gradient vectgt Vagg = arg(Vuvg) + «.

Proof. Using the summation convention, we write out Eq. (1.1) as

ov 1 oxv v

= Ryfojn— — 2300} . 2.3

o Vol ‘k{ STV Vo] “’} @3
Substituting

v = vo(x, y, 1) + € Erx i gt
into Eq. (2.3), equate terms of orderand freeze coefficients. Then, writing
1E) = 2p(&) + O(ED
to extract the principal part in the growth ratewe calculate that
2p(€) = |E|* cose — (Ra, §)(d, ) = (@ x &) - (R x §) (2.4)

where(, -} denotes the Euclidean inner product angt Vvg/|Vvg|. The second equality in Eq. (2.4) is a conse-
guence of Lagrange’s vector identity and yields the growth rate in terms of vector dot and cross products. Observe
that, vanishes ifg is parallel toa or Ra. A nonzero, homogeneous quadratic form such as Eq. (2.4) can vanish
along only two directions. Therefodg (&) cannot change sign within the wedge Eq. (2.2). We may see. it

is positive in this wedge, and negative outside it, by observing that on the ﬂﬁcle 1}, the first term in Eq. (2.4)

is constant while the second term assumes its maximum where the circle intersects the line that bisects the wedg
{argé = argd + a/2}. O

As may be seen from the proof, the two angles that bound the wedge Eq. (2.2)represent characteristic directions ir
the (x, y)-plane of the steady-state equation

div (R%) -0, (2.5)

consequently, the steady-state equation is hyperbolic.

1 Note that ifug(x, y) is an equilibrium solution of Eq. (1.1), then= Ap, i.e. the exponential growth rate equals the principal part.
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For the special case af = 0, the rotation matrix in Eq. (1.1) becomes the identky= 7, and Eq. (1.1) has a
functional that is monotone decreasing (subject to natural boundary conditions),

2
E = f |[Vu|dx dy, (ij_f = —/ [div <|z_z|)i| dxdy <0. (2.6)

This special case is related to models for geometric motion by mean curvature [11]. Generalizations of geometric
evolution equations have been considered in the field of image processing [2,5,8,20]. These latter models, generally
called Perona—Malik equations [24], are based on a different class of generalizations than Eq. (1.1); however, we will
show that they share some important properties. For Eq. (1.1) witheO< 77 /2 there is no decreasing functional
corresponding to Eq. (2.6). However, we shall identify a Liapunov functioorierdimensional solutions.

2.2. The continuous one-dimensional model

For any nonzer@ = (a1, a»)" € R2, the linear function
v(x,y) = a1x + azy 2.7

is a solution of the steady-state Eq. (2.5), one which describdsrm shearing. In this paper, we study only
one-dimensional perturbations of Eq. (2.7), i.e. solutions of the form

v(x, y,1) = a1x + azy + w(x, 1). (2.8)

Without loss of generality, throughout this paper we take= 1 in Eqg. (2.8), and for simplicity we take advantage
of rotational invariance of the Eq. (1.1) to make the one-dimensional perturbation beardirection. Observe
that for functions of this formd,v = ay, thus, provided that> # 0, Vv will never vanish, thereby avoiding the
singularity in Eq. (1.1). This ansatz is motivated partly by having observed such one-dimensional solutions as the
large-time limit of two-dimensional simulations of Eq. (1.1) and partly by our desire, in this initial investigation of
ill-posed problems, to work in a context where much of the behavior can be derived rigorously.

To examine ill-posedness of the one-dimensional problem, suppose that) in Eq. (2.8) is an exponential,
w = 517 SinceVyy = g and argf: =0, Eq. (2.2) may be simplified to show that one-dimensional perturbations
of the steady-state solution, i.e. Eq. (2.7) are ill-posed if

—a < arga < 0. (2.9)

For contrast, if-7 < arga < —a orif 0 < arga < = — «, then Eq. (2.7) is well-posed in the one-dimensional
context. In this respect, the one-dimensional problem differs greatly from the two-dimensional problem: Eq. (1.1)
is always ill-posed when plane waves in all directions are allowed as perturbations of Eq. (2.7).

On substitution of Eq. (2.8) into Eq. (1.1), we obtain

ow d
— = —(F 2.1
o7 8x( (wyx)), (2.10)
where
F(s) = <RT21, w> (2.11)
la + se1]

whereRT is the transpose (and inverse) of Eq. (2.1), ane: (1, 0)". Recalling thata| = 1, we define an angle
¢ = —arga (note the minus sign), so

a = (cosg, —sing) ', (2.12)
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F(Smax) =1

F — cosa

F(s)

Fig. 2. The nonlinear flux functiof'(s) for 0 < ¢ < « (case 1).

without loss of generality we restrigt to the range 0< ¢ < m. We shall consider Eq. (2.10) on the interval
0 < x <1 and impose homogeneous Dirichlet boundary conditiong:on

w©0,1)=0,  w(l, 1) =0. (2.13)

In terms of the two-dimensional PDE (1.1), we are seeking a solution on the verticabstif(x, y) € [0, 1] x R}
of the particular form Eq. (2.8) satisfying boundary conditie®8, y, r) = a2y, andv(1, y,t) = a1 + azy. Itis
interesting to note that in the casgs= 0 and¢ = «, the boundary of2 is characteristic for the steady-state
problem (2.5). Incidentally, the case of periodic boundary conditions for Eq. (2.10u (et x, 1) = w(x, 1), IS
also covered by our analysis apart from a possible nonzero mean valuédor

The properties of PDE (2.10) depend on the form of the nonlinear flux funétign Using Eq. (2.12), in terms
of ¢, Eq. (2.11) can be re-written

F(s) = cos(a — @) + COSot. (2.14)
V1+ 25 cosg + s2
Fig. 2 shows a graph af (s) for one choice ofr and¢. Note that, for every choice of and¢, F(s) is a bounded
function for alls, taking values in the range cosa < F(s) < 1, with the lower bound approachedsas> —oo.
Ass — oo

F(s) = cosa + w + O(s72). (2.15)
The upper limit,F(s) = 1, is achieved atmax, the unigue maximum of’, where the two vectors in the inner
product (2.11) are parallel, i.e. ai@+ smaxé1) = —a. This critical point is given by
sin(a — ¢)
sine
This point separates the two intervélsoo, smax) and(smax, 00), whereF (s) is monotone increasing and decreasing,
respectively.

Differentiating the one-dimensional Eqg. (2.10) with respeat,te obtain a nonlinear diffusion equation for the
slopes(x, t) = wy (x, 1),

(2.16)

Smax = —

as 92 s 9 ds
- _(F or —=—|(D(@s)— ], 2.17
or ~ 92 FO) ot ox ( (S)8x> .17
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Fig. 3. The nonlinear flux functiof'(s) (a), and the corresponding nonlinear diffusion coefficit) = F’(s) for ¢ > 2« (b) (case 3).

whereD(s) = F’(s) is the nonlinear diffusion coefficient. Fer < smax, D(s) > 0, and hence, Eq. (2.17) is a
linearly well-posed nonlinear forward diffusion equation, whilefor smax, D(s) < 0 and Eq. (2.17) is a linearly
ill-posed backward diffusion equation (see Fig. 3b). We observe thatforgiven by Eq. (2.14), the corresponding
diffusion coefficient is

sina sing
" (1+ 25 cosg + s2)3/

The one-dimensional Perona—Malik equation [26],= (p(w?)wy)y, is of the form Eq. (2.17), withF (w,) =
p(w?)w,. For this equationF’(s) = p(s?) + 2p’(s%)s? also becomes negative at largtor appropriate functions
o(s?) of interest [20].

Eq. (2.10) has the Liapunov function

D(s) =

5 (5 — Smax)- (2.18)

1
E:/ V(wy)dx where V(s):fF(s)ds. (2.19)
0

Subject to Dirichlet or other appropriate boundary conditions, the Liapunov function is monotone decreasing, with
its evolution given by
dc
="
Up to an additive constant, the anti-derivativerdf) in Eq. (2.14) is given by

V(s) = sinasingIn (cos¢ +s+4/1+2scosp + sz) + cosay/ 1+ 25 coSp + s2. (2.21)

We definesgrit as the value of the slope {00, smax), WhereF (s) equals its limit as — oo, i.e. F (s¢rit) = COSw
, Or arg(a + serité1) = —2a (see Fig. 2). This value is given by
—sin(2a — ¢)

sin2x
We will show that the long-time behavior of the discrete model of Eq. (2.10) is related to whgth@ndsci; are
positive or negative. We distinguish three cases as follows, indicating the corresponding relations betnggn
for each case:

1
/ [0 F (w,)]? dx < 0. (2.20)
0

(2.22)

Scrit =

casel: sgit <sSmax<0, O<¢ <a
case2: seit <0 <smax, o <¢ <2 (2.23)
case3: O< Scrit < Smax» 200 < ¢ <7
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Note that in case 1, we haw' (0) < O (see Fig. 2), so the trivial equilibrium solutian = 0 is ill-posed to
one-dimensional perturbations. More generally, we claim that any possible smooth solution must be ill-posed
in case 1. To see this, observe that the boundary conditions (2.13) force solutions to maintain zero average
slope, [ w, dx = 0. Hence, in case 1, every nontrivial continuauéx) will be ill-posed in some subset of

0 < x < 1, where its slope is positive. This argument for the one-dimensional problem (2.10) independently
re-derives and generalizes the earlier linear stability result (2.9). In contrast, for cases 2 and 3 the trivial solu-
tion of Eq. (2.10) is well-posed. Moreover, for initial data with nj@x) < smax EQ. (2.10) is strictly forward
parabolic. Consequently; (i) a maximum principle for can be established, (ii) tHe, norm ofw, evolves accord-

ing to

d

1 1
a/ wf dx = —/ D(wx)w)%xdx <0, forw, < Smax (2.24)
0 0

and (iii) this class of solutions convergeito= 0 ast — oo. While case 1 can be distinguished from cases 2 and 3

by the respective ill- or well-posednesswf= 0, we will show that cases 2 and 3 differ in whether orwot 0 is
the unigue equilibrium solution of the discretized version of Eq. (2.10).

2.3. The semi-discrete one-dimensional problem

As discussed in the introduction, we consider a continuous-time/discrete-space, approximation to Egs. (2.10)
and (2.13). Specifically, given a positive integér> 2, let Ax = 1/N be the uniform spacing of grid points in

a finite-difference discrete solutian, (1) ~ w(nAx,t),forn = 0,1, 2, ..., N. The discrete solution evolves ac-
cording to the coupled system @iV — 1) nonlinear ordinary differential equations far = 1,2,...,
N —1,
%zi F¥nimWn (e weer) | (2.25)
dr Ax Ax Ax

where the boundary conditions (2.13) become
wo = 0, wy = 0. (2.26)

For N = 2, Egs. (2.25) and (2.26) reduces to a single first-order equatiamfasimilarly for N = 3, the general
model reduces to an autonomous phase plane systemy fandw,. Recently and independently, work on these
low-dimensional models was done in [36] for the study of clustering instabilities in granular gases. Our analysis of
the solutions of Egs. (2.25) and (2.26) applies foalt- 2, but our focus will be the consideration of large values
of N and the continuum limitv.— oo.

For brevity, we will write the arguments df(-) in Eq. (2.25) as

Wn+1 — Wy

This is a second-order-accurate centered finite-difference approximation of the spatial derivati)glgjli/gt) =
wy((n + 1/2)Ax, 1) + O(Ax2). The discrete system (2.25) has a Liapunov function analogous to Eq. (2.19):

N-1

Lwy) =Y V(W 1 Ax. (2.28)
n=0



T.P. Witelski et al./ Physica D 160 (2001) 189-221 197

Using summation by parts, it can be shown similarly that the discrete Liapunov function is monotone decreasing:

d (A= o, dwupr  dw,
3 | 22 VA =§) Fpa) (—g— g

n=0 n

N-1 F(w/ ) _ F(w/ ) 2
-y ( n+1/2 n—1/2 ) Ax <0, (2.29)
Ax
n=1
Formally, the discrete model (2.25) converges to the PDE (2.18)as> 0 up to QAx?) errors. As an aside, we
comment that the discrete model can be related to a higher order well-posed PDE problem. Retaining terms through
order QAx%), we derive the effective PDE for Eq. (2.25):

w 0 AxZ2 1 9
ar  ox

0 4
F _ —IF A 2.
w0 + S o (w1 )| + 0t (2.30)
with the additional boundary conditionsx(0) = wyx(1) = 0 derived from Eq. (2.26). While all of our analysis is
based on the discrete model (2.25), we include this continuum equation to connect to other literature and analysis.
Linearizing this equation about = 0, we obtain

ow (82w Ax? 9%w

T _po(lE 2"
© 3x2+128x4

4
o ) O(Ax™. (2.31)

For D(0) < 0, Eq. (2.31) contains a destabilizing second-order term and a regularizing fourth-order term. This
balance of terms occurs in many models of physical systems, including the Cahn—Hilliard equation for binary
mixtures [7,29] and the Kuramoto—Sivashinsky equation [15] from combustion theory, image processing models
[2,8,20], biological systems [21,23], and spatially discrete mechanical systems [26,28]. Solutions of these equations
exhibit regions where the solution is smooth, which are separated by thin layers with large gradients; for large times
these layers eventually merge together [29,30]. We observe analogous coarsening behavior in solutions of Eq. (2.25).
For D(0) > 0, the fourth-order linearized modified PDE (2.31) is high-frequency unstable. However, as noted in
the introduction, the discrete finite-difference model (2.25) eliminates the dynamics of all length scales smaller than
the fundamental grid-spacing. Consequently the spatially discrete system (2.25) is not subject to such unbounded
growth rates at high frequencies.
SinceF (s) is bounded, solutions of Eq. (2.25) exist for all time and grow at most linearly in time. We show that,
in fact, independent cAx = 1/N, the solution isbounded for all time in the max norm: i.e. there existgasuch
that

max;, |w, ()| < C.

In view of the boundary condition (2.26), boundednessugft) is an immediate consequence of the following
proposition.

Proposition 2. If w(r) isasolution of Eq. (2.25)and if So = min,,w;l+l/2(0), thenfor allnandall ¢+ > 0
Wy1/2(8) = MinCscrit, So).- (2.32)

Note that ifw(x, t) were atwice differentiable solution of Eq. (2.10), them would satisfy the stronger estimate
wy (x, 1) > MiN(smax S0), WhereSo = inf . w, (x, 0). Indeed, since (s) is monotone increasing oR-o0, Smax),
the maximum principle gives this estimate. However, because of the discretization, solutions of Eq. (2.25) do not
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satisfy this stronger estimate. Nevertheless, the derivation of Eq. (2.32) is modeled on the proof of the maximum
principle.

Proof. For brevity, lets, denote the RHS of Eq. (2.32). Obviously, Eq. (2.32) is initially satisfied at time0.
Suppose that for all grid points and for alk r,, we havew’(r) > s,, and suppose that for some grid paintve
havew,’1+l/2(t*) = s4. Then, taking differences of Eq. (2.25), we calculate that at this point and.:

dw;,+1/2

1
dr - A_xZ(F(w;H/z) = 2F (s:) + F(w,_12)).

1=ty

We claim that
F(sx) < F(wyy3/5) (2.33)
and similarly forF (w;,_, ), from which it follows that at = r,,

I
dwn+1/2

0. 2.34
o > (2.34)

=ty

To prove the claim, observe that < w; . 55. If w3/, < sciit, then Eq. (2.33) follows from the fact that(s) is
monotone on an interval containirig oo, scrit). On the other hand, it < w;,+3/2’ then

F(s) < F(scrit) < F(wy 30, (2.35)

the latter inequality in Eq. (2.35) being apparent from Fig. 2.

By itself, condition (2.34) is not sufficient to exclude the possibility th%rl/z(f) < s, for somer > t,.
However, as in the proof of the maximum principle [18], we may derive Eq. (2.32) from the above argument by
taking the limit of slightly modified functions for which Eq. (2.34) becomes a strict inequality. O

3. Thediscrete steady-state solutions

The trivial solutionw,, = 0, is an equilibrium of Eq. (2.25). In this section we determine the nontrivial equilibrium
solutions of Eg. (2.25). We show that the number of solutions depengisonresponding to the three cases identified
in Eq. (2.23).

3.1. Equilibrium solutions of the discrete model

If an (N + 1)-component vectofw, } is an equilibrium solution of Egs. (2.25) and (2.26), then there is a constant
F such that the slopes of Eq. (2.27) all satisfy

F(w 1) =F, n=01...,N-1 (3.1)

From the boundary conditions (2.26), thevalues of the discrete slopau;lJrl/z}, are also subject to the global
constraint

N-1
n=0



T.P. Witelski et al./ Physica D 160 (2001) 189-221 199

This condition is the discrete analogue fofv, dx = 0, the consequence of the homogeneous Dirichlet boundary
conditions (2.13). Thus, we have identified equilibrium soluting} of Eqgs. (2.25) and (2.26) with solutions
({w}, 1,5}, F) of Egs. (3.1) and (3.2).

Considering Eqg. (3.1) alone, we note that nontrivial solutions are possible only #sen= F has multiple
solutions. If cosx < F < 1, there are two values of the slopecall thems; andso,, such thatF (s) = F:

F(s1) = F(sp) = F. (3.3)

From the properties of (s) given by Eq. (2.14), it is clear thai ands, must brackekmax. WhenF = 1, both
roots are close tomax; as F decreases the roots separate continuouslyFAs cosa, one solution of Eq. (3.3)
becomes large; — oo, while the other one approaches the limit— scrit. Using Eq. (2.14), we can eliminafe
in EQ. (3.3) to express in terms ofsy:

Sin(2a — 2¢)/ SiN 2 — s¢yit 52

s1= H(s2) = : (3.4)
Scrit — $2

This formula shows that, a8 varies,(s1, so) traces out a portion of a hyperbola, as shown in Fig. 4. This hyperbola
is necessarily invariant under the interchange;cdindss. Its horizontal and vertical asymptotes age — scrit.
Changing the values af and ¢ affects the position of this hyperbola in the plane and changes the number of
solutions of the discrete problems (3.1) and (3.2).

To complete the description of the nontrivial equilibrium solutions, we now examine the constraint (3.2). To
enumerate the equilibrium solutions, we defii@s the number of grid positions where the S|®1Q§_1/2 iss1; the
remainingN — K positions will have slope,. Consequently, Eqg. (3.2) reduces to

Ksy + (N — K)s2 =0. (3.5

Graphically, finding the intersection points of the hyperbola, Eq. (3.4) and the line, Eq. (3.5)(n tk® plane
yields all of the nontrivial equilibrium solutions at givém, ¢), see Fig. 4. Eliminating; from Eqgs. (3.4) and (3.5)

S2

,"(51w7 s;”

S1

Fig. 4. The construction for the weak?, s_\’_v) and strondsS, sf) solutions in case 2, given by the intersection points of the hyperbola, Eq. (3.4)
and the line, Eq. (3.5).
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T
Case 3’
’,/’/ b 2o
P Case 3’
N, K)
B — 20— ¢ B(a, N,
f=2a P N =40 Case 2 Case 2
a
N =20
N =10 Case 1’
0 0
0 /2 0 N/2 N
@ @ (b) K

Fig. 5. The upper bound for case @ < B(a, N, 1), for N = 10, 20, 40, ... ., and the continuum limit3 — 2a asN — oo (a), andB(a, N, K)
for Kin1l < K < N with fixed N (b).

yields a quadratic equation feg. This equation has two real solutions if the resulting discriminant is positive,
(N — 2K)?sin?(2a — ¢) + 4K (N — K) sin 2xsin(2a — 2¢) > 0. (3.6)

The case of equality in Eq. (3.6) corresponds to the case when the line, Eq. (3.5) is tangent to the hyperbola, Eq. (3.4
and defines an upper bound brin case 2. We write this bound as the functipny = B(a, N, K), in terms of
a, N, K witha < 8 < 2a (see Fig. 5).
Using B(a, N, K), we can define three cases for the equilibrium solutions of the discrete problem (2.25) that
correspond to the cases given by Eq. (2.23). In the limitihat oo, for any fixedK , we find that the upper bound
for case 2 isp = B — 2, corresponding to Eq. (2.23) (see Fig. 6.). For fimtethe conditionp = B(a, N, K)
defines the degenerate case where the quadratig lfias a double root. For evegy< S, there are two distinct real
roots forsz, which we will call thestrong andweak solutions (denoted by superscripts S and 3@),< s\z’V , see Fig.
6. For the range & ¢ < « corresponding to case 1, (see Eq. (2.2@)51nds‘2’\’ have opposite signs, see Fig. 6. At
¢ = a, the weak solution becomes degenerafé = 0, and it intersects the branch of trivial solutions= 0. As

Fig. 6. The bifurcation diagram for the weak, strong, and trivial equilibrium solutions.
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we will describe later, this intersection point is a transverse bifurcation that is connected with a change in stability
of these solution branches. For the range; ¢ < 8, corresponding to case 2 (A5— oo) both strong and weak
solutions yield negative slopes fer. Finally, for the rangep > 8, corresponding to case 3 (As— o0), there is
only the trivial solutionw = 0.

We summarize these results on the classification of nontrivial equilibrium solutions in tesnasf For any
N > 2 andforeaclk with1l < K < N:

casel: twosolutionsss <0<sy, O<¢<a
case?2: twosolutionss3 <sy <0, «<¢ < N,K) (3.7)
case 3: nonontrivial solutions Bla,N,K) < ¢ < 7.

Case 1is the same as case 1 of Eq. (2.23); casemd 3 approach cases 2 and 3 of Eq. (2.23M\as> oo, for
which 8 — 2a. The correspondingy values are given by Eq. (3.5 = —(N — K)s2/K. For given values of

N and KX, there ar€ %

two slopes. Clearlys; ands, must have opposite signs, andkf < N, then|s1| > |s2|, €.9. see Fig. 7. These
solutions withK « N can be described as having jump discontinuities at the grid points with the larger slope
s1, with the magnitude of the jump beingAx = s1/N; the remainder of the solution is piecewise linear with
slopes,. We will refer tos; as the “jump” or “shock” slope, and t@ as the “background” or “mean-field” slope,
respectively.

At this point we note that the above description actually provides a redundant enumeration of the set of equilibrium
solutions. This is due to double counting of the solutions caused by the symmetry under the interchange,

) distinct equilibrium solutiongw, } resulting from different spatial arrangements of the

s1<s2 and K < N —K, (3.8)

i.e.if {s1, s2, K, N — K} describes a solution of Egs. (3.3) and (3.5), then so ¢nes;, N — K, K}. To eliminate
this redundancy, let us define the two slopes in a nontrivial equilibrium solution with one slgpbat is greater
thansmax S+ > sSmax and the other less thamay, s— < smax. FOr enumeration of the solutions, we can associate
s+ with s1 and henceforth defing as the number of grid cells with slopeg:

Ksy + (N — K)s_ = 0. (3.9)

0.3 0.004

0.15 0.002

\ -0.002

@ N (b)

Fig. 7. Two equilibria for case’with « = 7/8, ¢ = «/2 andN = 100: (a) a strong shock solution witti = 2 jumps, and (b) a much
smaller-amplitude weak shock solution f&r= 1.
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This description of the two equilibrium slopes will be of particular importance for the later analysis of the stability
and dynamics of solutions of Eq. (2.25). This is because- smax corresponds to the ill-posed regime for the
PDE (2.17) withD(s) < 0, whiles_ < smax corresponds to well-posed behavior witl{s) > 0. Except in the
special case of the casevieak solution, the descriptions of solutions based on the ill-posed and well-posed slopes,
(s+,s—), are equivalent to the descriptions in terms of the jump and background siepes).

We now derive asymptotic estimates for the two families of weak and strong solutions with a singl&jumbp,
in the limit of largeN . In this limit, s, tends to infinity, and from Fig. 2 we see thattends tasit; more precisely,
by condition (3.5) we obtain

5S = seit + OWN ™) < 0, 53 = —(N — Dserit + O(1) > 0. (3.10)

We will call these solutions with slopésS, sJSr) strong shocks. They correspond to the lower branch of solutions
shown in the bifurcation diagram Fig. 6, where we note ¢hat 0 yieldssit = —1, i.e. the endpoint of that branch
of the bifurcation diagram.

For K =1 asN — oo, the other solution is given by

S0
sW =

T=mrat ON7?), sW=s+0ND, (3.11)

wheresg is the nonzero slope such th&tsg) = F(0), specifically,
—sin(2a — 2¢)

sin(2a — ¢) (3.12)

S0 =
We will call these solutionsveak shocks. As N — oo, these{w,} solutions are vanishingly small in amplitude,
they scale as V1) — 0 everywhere, with the size of the jump beinfAx ~ so/N (see Fig. 7). The weak
shocks correspond to the upper branch of solutions in Fig. &.Atx, sop = 0, and as noted earlier, the weak shock
solution coincides with the trivial solutiom,, = 0.

Note that similar results for multiple-jump weak and strong shock solutions can be derived for ank fixed
1,2,3,... inthe limit thatN — oo. Then, given the values of the two equilibrium slopesands_, and their
spatial distribution, say the valueg, withk = 1,2,..., K, of the grid points where the slopes = w',, 112
occur, then the solutiofw, } can be reconstructed explicitly from

n
wn:Zw}+l/2Ax, n=0,12...,N. (3.13)
Jj=0

3.2. Comparison of discrete equilibria with generalized solutions of the PDE (2.10)

As described above, the equilibrium solutions of the discrete problem (2.25) are piecewise linear functions with
K finite jumps. For the case & = 1 jump, applying the boundary conditions (2.26) and summing the difference
quotientw, 1,2, Eq. (2.27), over yields the equilibrium solution

wy = S_ [nAx — Hn —[ne + %])] , (3.14)

whereAx = 1/N, H(-) is the Heaviside function, and. is the value of: for which w;/1+1/2 =sy. FOrN — o0,
this solution is the discrete analogue of a weak solution of the PDE (2.10).
Formally, an equilibrium solution of Eq. (2.10) hasF (w,) = 0, or equivalentlyF (w,) = F. If F = cosu
then there is a family of piecewise linear weak equilibrium solutions with a single finite-jump discontinuity. The
mean-field equilibrium slope is the finite solutionBfw,) = cosa, i.e.wy, = scrit, EQ. (2.22). Consequently, we
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can write the equation for an equilibrium solution with a single discontinuity as= scit[1 — 8(x — x4)], where
$ is the Dirac delta function and @ x, < 1 is the shock position. Integrating this and applying Eq. (2.13) yields
the steady-state solution

w(x) = scritlx — H(x — x4)]. (3.15)

This one-parameter family of solutions, parametrized by the shock position in the domair,0< 1, is the
continuum limit of Eq. (3.14), since @ — oo, s+ — oo ands_ — scrit.

However, (among many other solutions) piecewise linear weak equilibrium solutions can be constructed with
any countable number of positive jump discontinuities. We are content to mention in passing the formal similarity
between solutions of the discrete system and generalized solutions of the ill-posed PDE Eq. (2.10). More definitive
statements about the solutions of the PDE require careful analysis [14,20]. In the following sections, we study in
detail the stability, local instabilities and global dynamics of the discretized model (2.25).

4. Stability of the equilibria

The following result on the stability and long-time evolution of solutions of Eq. (2.25)for the cases defined in
Eq. (3.7) will be proved in this section.

Proposition 3. On the stability of equilibrium solutions of Eq. (2.25):

Case 1": Only strong shock solutions of Eq. (2.25)with a single jump discontinuity are stable.

Case 2': Srong shock solutions with a single discontinuity and the trivial zero solution are the only stable
equilibria.

Case 3': The zero solution is stable and in fact globally attracting.

Incases 1’ and 2 for almost every initial condition (i.e. not on the stable manifolds of the unstable equilibria),
every solution approaches a stable equilibriumast — oc.

4.1. The Liapunov function: a necessary condition for stability

We now make use of the Liapunov function (2.28)

N-1
L(w) = Z V(u)/,,+(1/2) Ax,
n=0

to establish some fundamental stability results for the discrete system (2.25). Recall from Eq. (2.29)sthat
monotone decreasing asevolves. Indeed; defines Eq. (2.25) as a gradient system in the form
dw,, 1 9
d = Axow,’

n=12..N-1 (4.1)

In particular,w is an equilibrium solution of Eg. (2.25) if and only if it is a critical point6f £ is bounded from
below and tends to infinity gsv| — oo. ThereforeL must always have at least one local minimum corresponding
to a linearly stable solution.

In case 3 w = 0 is the only critical point ofZ, thus, from the properties &, w = 0 must be a minimum of.
Therefore, in case’ 3the trivial solution is stable and globally attracting.
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Turning to cases 'land 2, the following result eliminates most candidates in the search for stable
equilibria.

Proposition 4. If w® € RV *lisan equilibriumsolution of Eq. (2.25)derived fromEgs. (3.3) and (3.5)ith K > 2,
then w? isnot a local minimum of £.

Proof. Consider an equilibrium solution® with s, , s_ given by Egs. (3.4) and (3.5) for a givéh> 2. To demon-
strate that such a solution is not stable, we showghianot a minimum atv° by differentiating along an appropriate
curve of vectors iRVt {w(q)}, throughw?. We construct this one-parameter family of near-equilibrium states
by perturbing two of thek values, where the slope i32+1/2 = s4 (at pointsn = n1 andn = ny), then the
finite-difference quotientw,’ﬂrl/z(q) satisfy

s+ +q if n=n,
, s+ —q It n=noy,
w _ (4.2)
nt1/2 Sy if n=n, for k=3,4,....K,
S_ otherwise

where we note that fay = 0, we recover the equilibriumy(0) = w®, while the constraint (3.2) is satisfied for all
g. Then the Liapunov function is

1
L(w(g)) = N[V(SJ“ + @)+ Visy —q@) + (K =2V(sy) + (N = K)V(s-)]. (4.3)

At g = 0, the first derivative of(w(gq)) vanishes, and the second derivative satisfies

d’L 2 Vi) 2 F(s.) <0

—— == s)=—F(s4) <0,

dg?l,0 N N

where the final inequality follows from. > smax. Consequently, we conclude that Eq. (4.2) wjte= 0 is not a
local minimum of£, and hencew® with K > 2 is an unstable equilibrium. 0

4.2. Linear stability analysis
Having used the Liapunov function to establish the instability of all equilibria with more than one jump, we turn

to linear stability to analyze the trivial solution and single jut = 1) equilibria.
First, at the trivial solutionw,, = 0, the linearization of Eq. (2.25) is

Z—f —Lw=F (O™ i“;’f Un-1, (4.4)
whereL = N2F/(0)Tis the(N — 1) x (N — 1) symmetric tridiagonal matrix with
-2 1
1 -2 1
1 -2 1
T= S . (4.5)
1 -2 1
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The matrixT is the standard finite-difference centered second derivative operator with homogeneous Dirichlet
boundary conditions [16]. SincE is negative definite, with eigenvalues = —4sin?((1/2)xj/N) for j =
1,2,..., N — 1, the trivial solution of Eq. (2.25) is stable F’(0) > 0—in cases 2and 3—and is unstable if

F'(0) < 0—incase 1

To complete the stability analysis, we examine the linearization of Eq. (2.25) at single jarapl) weak and
strong shock equilibria for casesdnd 2. We will summarize the results below in Proposition 6. Note that from
Proposition 4, we can already eliminate the possibility that the single-jump weak shock S(thﬁim)f’), is a
stable equilibrium in cas€' Isince from Eq. (3.8) it maps onto a solution with > smaxWith K = N — 1 > 2,
however, we will mention it in the discussion for completeness.

The linearization of Eqg. (2.25) may be analyzed in terms of matrices containing two blocks similar-in-form to
Eq. (4.5). To facilitate the calculation, we introduce the notaﬁéﬁﬂ for the matrix (4.5); the subscript of course
specifies the dimension, and the superscripts refer to the Dirichlet boundary conditions at both end points of the
interval. Extending this notation, we shall wrmﬁm for the analogoug/-dimensional operator with Dirichlet
boundary conditions at the left endpoint and Neumann boundary conditions at the right endpoint:dex the
matrix with rows as in Eq. (4.5) except with the last row replaced by

(0 ... 0 1 —1). (4.6)

Similarly, Tlf?d) is obtained by modifying the first row dfjf,?d), andT,E;”) by modifying both the first and last rows.
For an equilibrium with one jump located at grid point= 1, i.e. w’1+1/2 = sy, the linearization of Eq. (2.25)
may be viewed as a perturbation of a block diagonal matrix:

To = diagT (™, T ). (4.7)

Specifically, the linearization is given by the symmetric tridiagonal operator

L(e) = N?F'(s-)(To — €P), (4.8)
where
_ F'Gsp)
F/(S_) ’ (49)

and the perturbatioR is given by
P= diag(OI_l, A Oy_;_2), (4.10)

with 0, denoting theM x M zero matrix andA the 2x 2 matrix

-1 1
A:<1 _1). (4.11)

Note thatP hasthree blocks, the 2< 2 middle block overlapping the corners of the two blocks in Eq. (4.7). Here,
we have assumed that2 1 < N — 3; the cases with a jump adjacent to either endpoint, which are simpler, are left
for the reader.

Proposition 5. To — €P is negative definite if —oo < € < (N — 1)~ and has one positive eigenvalue if ¢ >
(N -1~L
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Proof. We shall show that
det[-(To—eP)] =1— (N — De.

As shown by Givens (see [16]), the determindfit 1 of an(N — 1) x (N — 1) symmetric, tridiagonal matrix with
entriesM = {m;j} is generated recursively b = mjjd;_1— (m;_1;)%d;—pfor j =2,3,..., N —Lwithdg = 1
andd; = m11. In applying this algorithm ttl = —(Tg — ¢P),forj =2,...,I —1andforj=71+2,...,N -1
the recursion relation is

dj =2dj_1—dj_»,
while for the two values of between these two ranges
di=1-edi_1—di—2 and djy1=(1—e)d; —€*dj_1.

In the first range ofj, from the recursion relation, we obtath = 1+ j > Oforj = 2,3,---,1 — 1. Inthe
second range of, after applying the special cases foe= I andj = I + 1 given above, we find; = 1 — ¢ for
j=1,---,N — 1. Thus, the determinantis given By _1 = 1 — (N — 1)¢, as claimed.

Further, from Givens’ theorem [16], the number of positive eigenvaluég ef<P is given by the number of sign
changes in the sequen@é }. Note thatTg is negative definite, hence fer= 0 there are no positive eigenvalues.
Since{d,} for j > I is monotone decreasing, only a single sign change can ocaut, if < 0. Sincedy_1(¢) =0
has a simple zero far = 1/(N — 1), the matrixTo — €P has a single positive eigenvalue fore- 1/(N —1). O

Proposition 6. The linear stability of the single jump (K = 1) equilibria breaks down into cases as given by
Eq. (3.7):
Casel’: Thestrong shock sol utionisstable, whiletheweak shockishighly unstablewith N — 1 positive e genval ues.
Case 2': The strong shock is stable, while the weak shock solution is unstable with one positive eigenval ue.

Proof. We begin with the strong shocksY, s3). It can be shown that® < smaxfor 0 < ¢ < (e, N, 1) and for
anyN. Therefore the factoF’(s_) in Eq. (4.8) is always positive for strong shocks. To estir\aaﬂaelS in Eq. (4.9),
we use the asymptotic form (3.10) for, s2) in the formula (2.18) foD (s) = F/(s):

s (1+ 2scrircosg + &) %2

e=e¢ =O(N"?) > 0. (4.12)
! NZ(Smax - Scrit)Sczrit

Consequently, since = O(N2) « (N —1)~tasN — oo, by Proposition 5, all of the eigenvalueslofe) are
negative and the strong shock is stable for casasd 2.
In contrast, for the weak shoak", sﬁ’) , inthe limit N — oo, we find from Eqgs. (2.18) and (3.11) that

c=eWN o S0 — Smax
— "1
Smax(1 + 2scrit COSP + sgm)S/z

= 0(1) > 0. (4.13)

Therefore, for the weak shock,= O(1) > (N — 1)~tasN — oo, andTo — P is not negative definite but has
one positive eigenvalue for both casésid 2. For case 25Y < smax SOF'(sW) is positive and the weak shock
is unstable with one positive eigenvalues. For cdse™ > smax, S0 the multiplicative factoF’ (sV) is negative
and theN — 1 negative eigenvalues ot — ¢P becomeN — 1 unstable positive eigenvalues fofe) for the weak
shock. O

As was shown above in Proposition 6, for ca§esihce it is stable, the strong shock must correspond to a minimum
of the Liapunov functiorC. From Eq. (2.28), this value a is independent of the position of the jump within the
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domain. Therefore alV of the single-jump strong shock solutions are stable. The same argument can be applied
for the strong shock in casé. Zhese results are independent of the linearized analysis done in this section. Linear
stability analysis shows that the position of the shock and the influence of the boundary conditions do weakly effect

the values of the eigenvalues, but they do not change the stability of the solutions.

5. Representative dynamic simulations

In this section, we present the results of a representative set of numerical simulations of the dynamics of system
(2.25). These simulations illustrate some of the differences in behavior in the three cases in Proposition 3. The
simulations also guide the analysis of the nonlinear dynamics in the following sections.

We begin with a brief discussion of the numerical methods used for the simulations. As was discussed above,
while the continuum PDE (2.10) is ill-posed, for any finKethe discrete system (2.25) is well-posed, with global
solutions. Subject to typical analytic constraints [16,17], Eq. (2.25) can be solved numerically using any appropriate
method for integrating systems of coupled ODEs. Fig. 8 shows the results of a convergence study as the discrete
time-step approaches zeyy — 0, for a typical initial value problem. We tested several standard explicit and

implicit schemes. For sufficiently smallr all of the methods showed convergence with the expected order of

accuracy (see Fig. 8). The implicit midpoint method, written in general form as

m+1l _ . m

'lUn wn — ]:n (%(wm-‘rl + wM)) , (51)
At

w, (™) andt™ = mAt, had the smallest error coefficient and was used for all of the following

wherew! ~

numerical simulations.
In Fig. 9, we consider the evolution of the solution for an initial value problem in cgseith o = /8,

¢ = a/2, andw,(0) = sin(zn/N) forn =0,1,2,..., N with N = 100. As described above, in casé the

stable steady-state is piecewise linear with a single jump. The intermediate dynamics leading up to this state are
rather complicated. Fig. 9a shows the initial unstable behavior; the solution rapidly develops a large number of
jump discontinuities, forming what is sometimes called a “staircase pattern”. This stage of the evolution can be
compared to spinodal decomposition of binary mixtures [7], where large numbers of phase interfaces develop from

Backward Euler —=—
Forward Euler -
Modified Euler —-=-—

_4 |Implicit Trapezoid —-+-- / 5

107" | Implicit Midpoint - - = - - oy

error

o Gl A
e N
O 0(At?)
B g e
10—12 -«""f.—q;,,_...
10_6 10_5 10—4 10—3
At

Fig. 8. Convergence of different numerical methods for an initial value problem in témesystem (2.25).
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Fig. 9. Evolution for a cas€ nitial value problem: (a) short-time evolution up to timecaptures the unstable phase, where smooth initial data
forms lots of discontinuities, (b—d) coarsening behavior at times leading to the final steady-state with a single shockzgee

an unstable initial state. Fig. 9b—d shows the generic mode of evolution for longer times; the sizes of the jump
discontinuities evolve on slower time-scales. This regime will be describeahesening dynamics, where most of
the phase interfaces collapse leaving larger intervals where the mean field holds.

Due to the global constraint (3.2), while some of the jumps grow, others must decay. This behavior is illustrated
in a different form in Fig. 10b, where the values for all of the slomfrg,ﬂ/z(t), n=0-.--N — 1 are plotted as

; 80
0.945 60
40
L H
0.935 : v’
20
—— . \ -
0.925 :
0.1 tal to to 10 tq 100 0.1 tal t  t. 10 ts 100
(a) t (b) t

Fig. 10. The evolution of (a) the Liapunov function, and (b) the values of the local slmjg_q;;z forn=0,1,2,..., N —1plotted as a function
of time for the case’Jproblem in Fig. 9.
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Fig. 11. Evolution for the initial value problem in case &) w, profiles, and (b) slopeﬂw;’“/2 as a function of time.

functions of time. From this figure we note that at any time 0.1 there are a small number of points with large
positive slopes (jumps withy > smax), While most of the grid points have a small negative slope (the mean field
with s_ < smax). From Fig. 10a, we observe that the dynamics for Eq. (2.25) has a monotone decreasing Liapunov
function (2.28) that experiences a sequence of rapid declines coinciding with the collapse of each successive jump.
Ultimately, the single-jump, stable, strong shock is approached,fot + — oo (see Fig. 9d). Incidentally,
the location of the final jump depends very sensitively on the initial data and on the simulation parameters. In a
series of numerical experiments like that of Fig. 9, but with perturbed initial dat@) = (1 + ¢) sin(zn/N)
with ¢ = O(10-12), we found that even such tiny perturbations lead to discontinuous changes in the position
of the steady-state jump. This extreme sensitivity is a clear reflection of the ill-posed nature of the underlying
problem.

For contrast with Fig. 9, we present the evolution of the problem in caseith ¢ = 2.1«, starting from the
same initial conditions, see Fig. 11. Fig. 11a shows that for long-times, the solution converges to the stable trivial
solution,w = 0. However, since the initial data is partially ill-posed, with the slopes of the initial condition satisfying
w;,+1/2 > smax fOr some range i, a staircase pattern composed of finite jumps with large slopes develops for
t ~ 0.1. For comparison with Fig. 10b, Fig. 11b shows the more complicated intermediate dynamics for the large
slopes in case’3before they all decay to zero.

As described in Proposition 3, for case oth the trivial solutionv = 0 and theK = 1 strong shock solutions
are stable. One way to illustrate this bi-stability is to plot the Liapunov funafiéor the one-parameter family of
piecewise linear functions witkk = 1 (see Fig. 12),

S+
Whi41/2 = S+ Whis1/2 = N1 for n#ni. (5.2)

Then, as a function of the slopg at the jump, the Liapunov function (2.28) takes the form

L(ss) = % |:V(s+) L (N-DV (— Nsi 1)} . (5.3)
This is a double well potential with minima corresponding to the trivial state- 0 and the strong shock so-

lution (see Fig. 12a). The weak shock is an unstable equilibrium corresponding to a maximiiendfsepa-

rates the basins of attraction of the two stable states (see Fig. 12b). While this description is quite suggestive,
it is also somewhat misleading for the dynamic evolution. This is because solutions of Eq. (2.25) starting from
initial data given by Eq. (5.2§lo not remain within the family (5.2) withs, = s, (z). Nevertheless, this dis-
cussion serves to point out the significance of the unstable weak shock as a boundary for the basins of attrac-
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Fig. 12. (a) The double-well Liapunov function (5.3) provides a one-dimensional cross-section of the full energy landscape for Eq. (2.25), and
(b) equilibria for single-jumpK = 1) piecewise linear solutions in case 2

tion of the trivial and strong shock solutions. The existence of bi-stability in cage & model of clustering
of granular gases [36] of the same form as Eq. (2.25) with= 3 was studied in connection with hysteretic
effects.

Next, we illustrate the dependence on the initial conditions of the large-time limit of the solution in‘case 2
Consider the discrete problem (2.25) with= 100 and a two-parameter family of small-amplitude initial data
(€1, €2 small),

w(x,0) = e1SiN(Tx) + e2SiN(2rx). (5.4)

In case 2 the basin of attraction of the trivial solution depends on the valug @fitha < ¢ < B(a, N, 1). We
plot the boundary of the basin of attraction of the trivial solutior= 0 for various values o in this range, see
Fig. 13. All initial conditions within the basin converge #to= 0, large-amplitude solutions outside the boundary
converge to the stable strong shock solution. In the lmit- «, the basin shrinks to the origin, as in case 1, where
w = 0 is unstable and the shear band is the global attractor. In theflimit 8, the basin of attraction for the strong

0.1
0.05

€
S
-0.05
-0.1

-0.3 0.2 -0.1 0 0.1 0.2 0.3
€

Fig. 13. The basin of attraction for the uniform state= 0 fora < ¢1 < ¢2 < ¢3 < --- < B(a, N, 1) in case 2given in terms of the
two-parameter family of initial conditions (5.4).
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shock solution shrinks to a point, where there is a saddle-node bifurcation and the weak and strong shocks coalesce
(see Fig. 6). The trivial solutiow = 0 then remains as the unique (global) attractor.

6. Scaling laws and considerations of the continuum limit

In this section, we study in detail the coarsening dynamics of solutions of Eqg. (2.25) in’cagh Initial
conditions

w(x,0) = w(x) = Asin(rx), (6.1)
with

0 < |A] € Amax,
whereAmax = |smaxl/7 . For this range ofi, the condition

Oy w(X) > Smax (6.2)

is satisfied everywhere and coarsening dynamics is observed throughout the entire interval <01. Recall
from Section 2.2 that in case 1, the trivial solutien= 0 is linearly ill-posed and small-amplitude initial data
satisfying Eq. (6.2)will be unstable everywhere indOx < 1. Grid-scale instabilities develop everywhere and
evolve to a staircase profile (see Fig. 8a and b) followed by coarsening dynamics, during which the jumps vanish
one-by-one until just one remains. It is easier to analyze the dynamics for small initial data than the simulation
shown in Fig. 9, wherel = 1. We will consider initial value problems with small initial data for caseflEq.
(2.25) to avoid complications that may be introduced by bi-stability in caae@ nonuniform spatial instabilities
for large-amplitude data. While, we show results for the specific example with initial dataiwittL0~° in case
1 with « = 7/8 and¢ = 7 /16, andspmax ~ —0.855, for simulations withV = 2" x 100 form = 0,1,2,...,8
grid points, simulations with other data strongly suggest that the features of the ensuing evolution are universal, for
sufficiently largeN, for all initial data satisfying Eq. (6.2).

In Section 3, we defined equilibrium jumps as grid points where the discrete slope was Iarg%magﬂ/z >
smax- Here, we apply the same criterion for counting the number of jurkigs), in an evolving solutiorfw, (¢)}.
The remainingV — K grid points, wherez);lJrl/2 < Smax, are called the background. Examination of the simulations
shows that, for large time% (¢), the number of finite jumps at tinre satisfies the scaling law

F\-L3
K(t)NC(ﬁ> , (6.3)

for some constar@. A remarkable collapse (even for short-times) of the data from simulations with different values
of N occurs if we re-express Eq. (6.3) as a scaling lawkgV, the density of jumps in the interval,

LIOBY C(N%)~13, (6.4)
This scaling behavior is exhibited in Fig. 14a, which contains data from simulationsNvith 2" x 100 for
m=20,1,2,...,8grid points.
Adirectconsequence of Eq. (6.4) is a scaling law for the average slope for a jumpaftfmsee this consequence,
we note that the global constraint on the slopes (3.2) holds for all timesY%ands®"? be the averages at time
of the jump § > smax) and backgrounds(< smax) Slopes, respectively. Then in terms of these averages, Eq. (3.2)
yields a generalization of Eq. (3.9) valid for all times:

K9+ (N — K)s29=0. (6.5)



212 T.P. Witelski et al./ Physica D 160 (2001) 189-221

108

1
0.1 ON) il
103 v
102 Savg
K/N
10-3 10f .-,
10~1
0.1-%
101 108 1012 104 108 10'?
(a) N3t (b) N3t

Fig. 14. lllustration of the A3 scaling laws during the coarsening regime of evolutionk{(a), the density of jumps in the solution, > smax,
and (b) the slope of the average junﬂ?ﬂg for a set of simulations with a range of values fér= 100, ... ., 25600.

respectively. For long-times®'9 ~ s¢iy andK decreases, leading 10 < N, so Eq. (6.5) reduces to

Sivg ~ —ﬁscrit ~ _foit
K C

Fig. 14b shows that for large times, the average slope at a jump does follow this scaling behavior.

A useful heuristic picture of the solution may be extracted from formula (6.3), considered at a fixed, thse
N — oo. In the coarsening dynamics regime, the solufien(ro)} is approximately piecewise linear in with
intervals of width @K —1) = O((ro/N)¥/3), where the slope is close tg;; alternating with single grid-cells with
large negative slopes of orde@/210)%/3). As suggested by Fig. 9a, wherever staircase pattern forms, it evolves
so that{w, (o)} continues to follow the initial data(x) in some approximate or locally-averaged sense. Based on
this observation we introduce two norms to investigate how the solution evolves from the initial data.

Specifically, we consider twh?2 norms, for the depature af,, () from the initial conditionw(x), Eq. (6.1), and
for the departure of the slopes, . ; (1) from w, (x):

(N21)1/3, (6.6)

1/2
Ey(t, N) = [Z |wa (1) — w(nAx)|? Ax} : (6.7)

1/2
Ey(t, N) = [Z W) 1/2(0) —gx(nAx)|2Ax:| ) (6.8)

Fig. 15 shows plots of these norms for a series of simulations with resolutiors2™ x 100 points withm =
0,1,2,...,8.From Fig. 15a, we see that for very short-tinigg(t) shows slow exponential growth with rate ~
—m?F'(0). This is to be expected, since Eq. (6.1) is a multiple of the lowest order eigenvector of the linearization
Eqg. (4.5). However, since this problem is ill-posed, this smooth evolution is very quickly overwhelmed by strongly
unstable high-frequency modes that generate grid oscillations. These instabilities also grow exponentially, with rates
on the order of the largest eigenvalug,_1 = O(N?) asN — oo (see Fig. 15a). This instability can be regarded
as the initial stage ophase separation—the formation of large gradients in the solution. Due to the maximum
principle, Proposition 2, these grid oscillations cannot grow indefinitely, but saturate and lead to another stage of
dynamics.

From the growth of the strong instabilities, we note that the timescale of the dynamics at the end of the regime of
linearized growth is = O(N~2). In fact, this timescale holds for all of the longer time dynamics of the solution.
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Fig. 15. Evolution of the normg;,, andE for a series of simulations in the limif — oo: (a) very short-time behavior showing linear growth
and N-dependent linear instability, and (b) evolution on the fast timescale, showing saturation of the phase separation instabilities.

Fig. 15b shows that for longer times, both norras, and E, depend on the rescaled time= N2:. In fact, there
is a remarkable collapse of the results from all of the simulations onto limiting curves independethatfhold
after the instabilities have saturated. Fig. 15b shows that for largee norms very closely follow the power-law

scaling with exponent /B3,

C
Ey(t, N) ~ Ww(zvzr)m,

E2(1, N) ~ Cy(N?1)Y/3,

(6.9)

Changing the point of view, fixing and lettingN — oo, from the scaling ofE(¢), we note that the maximum
slope in the solution will diverge like QV%/3) (see also Eq. (6.6)), see Fig. 16a. Further, note that the scalings for

norms (6.9) at a fixed time simplify to
Ey(t, N) = O(N~1/3)

From this we observe:

E2(1, N) = O(N?/3).

(6.10)

e For any fixed positive time, asN — oo, in terms of thel.2 norm, the solutionw, (+) will not have evolved from

the initial data, since,, = O(N~1/3) — 0.
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Fig. 16. Scaling laws for the properties of the solution at a fixed tinae 1, in the limit thatV — oo: (a) the evolution normES2 = O(N?3)

andE, = O(N~1/3), (b) K /N, the density of jumps in the solution.
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e For any fixed positive timg, asN — oo, in terms of the# ! norm, the solution blows up, sind?—f = O(N%3) -
Q.

These two observations for the finite-time behavior of the continuum livhit; oo, describe a solution that evolves
from the initial data only by instantaneously developing infinitesimally small jump discontinuities. This singular
behavior for the continuum limit shows that the discreteness of model (2.25) is essential to its dynamics for any
finite N.

Note that re-writing Eq. (6.9) foE,, in the form

A\ 3
Ey(,N)~ Cy (—) , (6.11)
N
shows that Eq. (2.25) has a very long timescale, O(N), associated with the coarsening dynamics. This is the
timescale that describes the very slow overall evolution of the system. As described earlier, during coarsening,
the large number of jumps initially created during the initial phase separation regime will systematically collapse
producing successive solutions with fewer, larger-amplitude jumps. In Section 7, we present some analysis of this
dynamic behavior.

7. Intermediate dynamics: coar sening

The dynamic simulations of the previous sections suggest that while we have thoroughly studied the steady-state:
and asymptotic stability, a complete understanding of the behavior of Eq. (2.25)requires an examination of the
complicated intermediate dynamics of the system as well. For ill-posed initial data, i.e. for data with,max
smax the formation of a large number of jumps in the solution creates very unstable intermediate states. From
Proposition 4, we know that there are no stable states with morekthanl jumps. Consequently, the dominant
feature of the evolution for all finite times will be a typeasiar sening dynamics—a process continually reducing the
number of jumps in the solution until a stable steady-state is achieved. In this section, we will use two approaches to
examine the dynamic behavior at a single-step transition, KdmK — 1 jumps. First, we use linear analysis to study
the unstable equilibria, then we also consider an approximate reduction of the full system to a lower-dimensional
nonlinear system.

7.1. Linearization at two-jump equilibria

To assess the transient timescale for the collapse of a jump discontinuity, we estimate the positive (unstable)
eigenvalue of the linearization of Eqg. (2.25) at an equilibrium with two strong shocks. As was done in Section 4,
the linearization can be analyzed as a perturbation of a matrix with block structure, but now with three blocks.
Specifically, if the jumps, separated bygrid points, are at the grid pointg = I andny = I + L, then

L(e) = N?F'(s_)(To — €P), (7.1)
where
To = diag ™™, T, T4, _, ). (7.2)

€ is given by Eq. (4.9), and
P =diag0;-1,A, 02, A, On—1—1—2). (7.3)
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Here,A is the 2x 2 matrix given by Eq. (4.11). In the following calculation, we shalldet> oo while keeping
I/N andL/N fixed.
The matrixTo in Eq. (7.2) is negative semidefinite with one zero eigenvalue associated with the eigenvector

u= (0 e.,On 711", (7.4)

where Q denotes thd-dimensional zero vector ang € bR” is given bye; = (1,1, ..., 1)T. This eigenvector
spans the kernel of the second-difference operator with Neumann boundary condiii@né[o leading order in
perturbation theory:

P
Amax ~ —€eN2F/ (s Pu) (7.5)
(u, u)
where(-, -) denotes the normalized Euclidean inner produdR8m, (u, v) = 3 u,v, Ax. Itis readily computed
that(u, Pu) = —2/N and that(u, u) = L/N, thus,

2¢N2F'(s%)
Amax ~ ————. (7.6)
L
To estimate:, we use the analogue of Eq. (3.10) for a two-jumip=£ 2) strong shock equilibrium:
—(N — 2)seri
sS = serit + OIN ™Y < 0, 53 = % +0(1) > 0. (7.7)

Using Egs. (4.9) and (7.7), we obtain the value &r the two-jump strong shock solution in terms of the previous
result (4.12):

F'(s3) _
S + S 2
=€ =— ~4e? = O(N™9), 7.8
€ =€ F'(s_S) 1 ( ) (7.8)
Consequently, we obtain the estimate,
8 sina sing
Amax ~ ——————. 7.9
max LSZ ( )

crit
Of course, YAmax defines the time-scale for the collapse of a two-shock meta-stable equilibrium; in particular, since
L scales likeN /K, the collapse time is proportional 8 asN — oo. Fig. 17a illustrates the accuracy of this
linear estimate for the evolution for the collapsing jump, starting from a small perturbation &f tae? strong
equilibrium, Eqg. (7.7), see Fig. 7a. The linear growth rate, Eq. (7.9) gives a very good estimate of the evolution until
the jump has almost completely collr:lpsm;ng/2 ~ Smax-

More generally, this argument can be extended to show that if the# anmps at pointsiq, no, ..., ng where
K « N, then the perturbation-theory estimate for the largest positive eigenvalue of the linearization is
263 N2F'(sS
Amax K s>) (7.10)

ming (ng — ng—1)

If the jumps are approximately equally spaced, then the denominaiojs ~ N/K. For solutions withK
jumps,eI% ~ Kzef, WhereelS = O(N~?), see Eq. (4.12). Consequently, our crude estimate for the timescale for the

2 Note that, likes, the smallest eigenvalues®§ are QN ~2). As a check on the accuracy of applying perturbation theory when the perturbations
are of the same order as the eigenvalues, we showed that the second-order correction to the eigerivalué)issthaller than the first-order
correction by a factor oV. Moreover, we determined the lowest eigenvalu& ©f ¢P using Sturm sequences (see [16]), and this yielded the
same results as perturbation theory.
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Fig. 17. Transient evolution for multiple-jump solutions: (a) time-evolution for the collapse of a jumg is& solution (solid line) compared

with the linear growth rate, Eq. (7.9) (dashed line), (b) comparison of the maximum unstable eigenvalderap equilibria (dots) with the
perturbation-theory estimate given by Eq. (7.11) (dashed line).

transition fromkK to K — 1 jumps is
2
1 ~ Scrit ﬁ
Amax 2Sinasing K3

(7.11)

A comparison of this estimate of the maximum growth rate with the largest unstable eigenvaluekofuthg
strong equilibria is shown in Fig. 17b, which confirms thatx = O(K3). For K > 2, the strong shock equilibria
haveK — 1 closely spaced positive eigenvalues, and a simplified single-mode linearized analysis may be insufficient
to describe the dynamic evolution of the problem for moderate to larger values of

We note that the results of the linearized analysis, Eqg. (7.11), suggest that the scalinghdwy &lrould have the
exponent one half rather than the actual value of one third, observed from the simulations in Section 6. The failure
of this linear estimate indicates that the dynamic solutigrir) does not come arbitrarily close to the unstable
K-jump equilibria during the coarsening process. In consequence, the rate of collapse of the jumps is faster than
the estimate from linear theory.

7.2. The jump-diffusion model

In this section, we formulate a model that seeks to isolate the evolution of the finite jumps, the main feature of
the nonlinear coarsening dynamics. lkgtdenote the discrete slope

snzw;ﬂ/z:W, n=012... N—1 (7.12)

Taking differences of Eq. (2.25), we write the equivalent slope-evolution equations:
ds, _ F(spr1) — 2F (sp) + F(sn-1)

— = 1 N -2 7.13

dr Ax? ’ =n= ( )
Similarly, at the edges of the domaim=0andn = N — 1,

dso  F(s1) — F(so) dsy-1 F(sy-1) — F(sy-2)

— = = - . 7.14

dr Ax? ’ dr Ax? ( )

Eq. (7.14) are derived from the Dirichlet boundary conditions (2.26). In particular, the equatian fas obtained
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Fig. 18. A portion of a solutiofw, (fo)} with N = 500 containingk = 20 jumps, seven of which are on€ x < 0.35 (a). A plot of the
corresponding values of the flux functiofi(s, ) indicating the decaying jumps, whet&F (s) < 0 (b).

by differentiating the boundary condition constraint (3.2), in the form
N-2
SN-1=— ) Su, (7.15)
n=0
with respect ta and using Eq. (7.13) to collapse the sum.
Note that Eq. (7.13) are a second-order accurate finite-difference discretization of the slope diffusion PDE (2.17):

ds 02
— =53 (FO). (7.16)

The jump inw, is expressed by
Wpal — Wy = Sy AX. (7.17)

This quantity corresponds to a jumpimas Ax — 0 only whens, is large,s, = O(N) asN — oo. In the
intermediate dynamics, we find that only laggmsitive values ofs,, can occur, withs,, > smax, as was the case for

the stable equilibrium solutions found in Section 3. Consequently, as was done in Section 6, points in the solution
{wy,} where the slope satisfies > smax Will be referred to agumps, and the remaining points with small slopes,

sn < smax Will be called thebackground.

In Fig. 18a, we show a typical numerical simulation wikh= 500, at a time when there afé = 20 jumps on
0 < x < 1. The evolution of a jump is controlled by the second differe¥tde(s,) = F (sp+1) — 2F (s,) + F (sp—1),
which appears as the numerator of Eq. (7.14). Specifically, whether a jump will grow or decay depedd# @ )f
is positive or negative, respectively. Fig. 18a shows a portion of the solutjpf < n < 180, containing seven
jumps (label thenar, o9, . . ., 07) and Fig. 18b shows the corresponding flugs,, ). Note that the flux is continuous
everywhere, and the first differenc® (s,,) = F(s,+1) — F(s,), IS piecewise constant with jumps corresponding
to those ofw,. Moreover, Fig. 18b shows that the second differesta is negative for jumps» andog, hence
those jumps will decay in amplitude. Also note that the jump labefleid close to equilibrium, since locall§ (s;,)
is nearly linear, and hen@@ F (o4) is near zero (see Fig. 18b).

Consider a solution of Eqgs. (7.13) and (7.14) starting wkithinterior jumps at some initial time. Numerical
simulations suggest that the background, wjth< smax equilibrates on a fast time-scale, and thereafter evolves
quasi-statically, being driven by the slower evolution of the jumps. In particular, since the background is at quasi-static
equilibrium, we deduce that (s, ) must be approximately linear between jumps, as indicated in Fig. 18b. We further
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observe in this figure thak'(s,) appears continuous at the jumps. Consequently, the flux of solution), is
determined everywhere by the valuesrfs,) at the jumps alone. With these observations, we can formulate a
closed system of equations for the evolution of the jumps that is decoupled from the quasi-static evolution of the
background.

Let oy = s,, denote the slope at thi¢h jump. TakingF (s,) to be linear irn between jumps yields the model

Flsn) = Flop) + 20D = PO 0y for me < < mea. (7.18)
N1 — Nk

To specify this model for the flux to the left of the first jump, and to the right ofKitle jump, respectively, define
00 = soandok 1 = sy—1. ThenF(s,) isdefinedforallO< n < N —1byEq. (7.18) interms af, for0 < k < K.
Since the jumps are assumed to be interior, BptAndsy_1 are less thanmay, are part of the background, and
hence evolve quasi-statically. In particular, the rates of evolutioad@ndog 11 in Eq. (7.14) are of lower order
than those of the rates of evolution for the jun{pg}. Balancing terms in Eq. (7.14) forces the conditions that
F(s1) = F(sg) andF (sy—2) = F(sy—1). Consequently, the slope &f(s,,) adjacent to each boundary is zero, and
hence

F(00) = F(01), F(ok+1) = F(ok). (7.19)
After some manipulation, substitution of Eq. (7.18) into Eq. (7.20) leads to the equations

doy 1 (F(0k+1) — F(ox)  F(ow) — F(ox-1)

dr ~ Ax2 Ng+1 — Nk Ny — Ng—1

), 2<k<K-1, (7.20)

and similarly including Eq. (7.19) gives equations éqrando :

doy  F(02) — F(o1) dog F(og) — F(og-1)
_ ’ __ , (7.21)
dr (n2 — nq1)Ax2 dr (ng —ng_1)Ax?

This system is similar in form to Eq. (7.14), but it represents a vast reduction of the problemkivker v —we
have to consider onlk coupled equations at the jumps, rather tharquations at all of the points in the domain.
Whereas Eq. (7.13) describes a finite-difference scheme for Eq. (7.20) on a uniform grid, Eq. (7.20) is a discretization
of Eq. (7.16) on a nonuniform grid, given by the positions of the junfipg,

It is perhaps worth considering the evolution of jumps in the context of the nonlinear diffusion PDE (7.16) for the
slope fields (x, ¢). If the solutionw(x, ¢) of Eq. (2.10) contains a finite number of jump discontinuities at locations
xx, then the slopes = 9, w, is a distribution containing delta-functions.gt Assuming the jump locations;
are stationary (independentQf we find thatd,s also has delta functions at the jumps. Consequently, interpreting
Eq. (7.16) in the sense of distributions, we find that the ffi(x) is continuous in space aréd F (s) is piecewise
continuous in space with jumps gt. Moreover, at the jumps, we have

[wlk = [0x F (s)]k,

where w]; = w(x,j', t) — w(x, ,t) denotes théth jump inw, and the RHS denotes the corresponding jump in
9, F (). In this continuum version of the jump-diffusion model (7.20), it is not clear how to expagdsst terms

of s, so the system is not closed. This is in contrast with the discrete model, for which jumpsne related tg,
through Eq. (7.17).

We now justify the claim of separation of time-scales in the discrete model WhenN. As described earlier, if
the slopegs, } for the background correspond to a smooth function 1) < smax thenasv — oo, then Eq. (7.13)
converges to the nonlinear forward-diffusion Eq. (7.16) with time-scales independantHéncer = O(1) for
the evolution of transients in the background. In contrast, for lafgthe jumps are;, = O(N), and by using the
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Fig. 19. Comparison of the piecewise linear flEis), Eq. (7.18), predicted by Eqg. (7.22) after the collapse of jumpith the actual solution
(a). Comparison of the decay of jurag predicted by Eq. (7.22) with the actual evolution (b).

asymptotics of the flux for large — oo, Eq. (2.15), in Eq. (7.20) yields the slow time-scale for the evolution of
the jumps as = O(N). This observation was obtained in Section 7.1, for the decay rate of unstable jumps in the
near-equilibrium case, Eq. (7.11).

We now briefly review the details of what happens as a jump collapses. Decay of a jump occurs ¢V ihe O
long-time-scale iB2F (o) < O; the slope decreases to a value with< smax. Local equilibrium will be achieved
whens2F (oy) = 0. As the evolution proceeds, the diffusion coefficigntyy) = F’(or) changes sign from negative
to positive, ag; decreases throughax. Consequently, further local evolution resembles that of a forward parabolic
equation, serving to smooth out gradients to the backgroynd,scit on the fast @1) time-scale. Moreover, when
a jumpoy collapses, then that grid poinj becomes part of the background, and the system (7.20) and (7.21) is
reduced to K — 1)-dimensional system for the remaining jumps. This model of the piecewise-in-time evolution
of system (2.25) is supported by Figs. 10, 11 and 17a, which show piecewise smooth dynamics punctuated by
the collapses of jumps at finite times. It is also appropriate to note that the reduced model (7.20) gives numerical
results that are indistinguishable from simulations of the full discrete model (7.13), apart from ¢hare@sients
associated with jump collapse in the regimgg < ox < smax-

The finite-time collapse of unstable jumps typically occurs one jump at a time, (see Fig. 10b). In a further
simplification of the reduced model, we show how to isolate the evolution of a single jump, and show that the
simplification leads to only small inaccuracies in the simulation, and the possibility of increased understanding of
the collapse mechanism.

Let us assume that in the coarsening process, there is a separation in the timescales of the successive collapse
of the jumps{oy }. This assumption is valid if there is a separation in the valué$ Bfoy) for the jumpsoy, i.e. if
—82F (01) ~ —82F (02) ~ —82F (03) - - - < —82F (0;) theno; will be the next jump to collapse; this is the case
for og in Fig. 18b. Then during the finite time that the jumpcollapses tar; — smax the remaining jumps will
have changed only slightly (see Fig. 19a). Consequently, if we neglect the slow evolution of the othey; jutrgrs
system (7.20) reduces to a single first-order ODEsfowhile all of the othew; are held constant:

de . Aj—BjF(O‘j)

= , 7.22
dr Ax2 (722)
where the constants;, B; are given by
F . F . . — .
Aj _ (0j+1) + (0j-1) B — njy1 —nj-1 (7.23)

’ J .
njyr—nj  nj—nj1 (njr1—nj)(n; —nj-1)
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Eq. (7.22) may be integrated starting from the initial size of slgps time Tk, when the solution ha& jumps, to
determine tim&x 1, when collapse has occurred, = smax leaving a solution witlk — 1 jump discontinuities. If
further we assume that all of the jumps are equally spaced (wjthy —n ;) Ax = 1/K and the jumps neighboring
o are very near equilibrium¥’ (o;_1) = F(oj+1) = F(scrit), then Eq. (7.22) becomes
2NK sina sing

gj

daj ~ 2K F ] F )
-~ A_x( (scrit) — F (o)) ~ —

ar (7.24)

where the second approximation results from the asymptotiégffor larges, Eq. (2.15). This equation has the
approximate solution

oj(t) ~ /ANKsinasing (Tx—1 — 1), Tx <t < Tk_1, (7.25)

whereTk _1 is the collapse time. From Fig. 19b, we see that Eq. (7.25) qualitatively captures the nature of the finite
time collapse of the jump. Fig. 19 illustrates the use of the piecewise linear flux approximation (7.18) and Eq. (7.22)
to calculate the collapse of tlag jump starting from the initial conditions given in Fig. 18.

This simplified model (7.22) can be expected to approximately describe the dynamics in some intermediate
regime, 1« K < N. As long askK « N, the piecewise linear approximation (7.18) will describe the flux, but
asK — 1, Eq. (7.22) can not hold, because there will be strong coupling between jumps due to the boundary
condition constraint (7.15). In practice, we have observed that the long-term dynamics are very sensitive to the
spatial coupling of the jumps. A scaling law is observed for the number of jufrgsa function of time for systems
with large N. Eq. (7.22) does not capture this, but the jump diffusion model (7.20) and (7.21) does reproduce this
behavior of the full system (2.25).

If we use the results of the reduced jump-diffusion model (7.22) and (7.25) with the initial values for the jump
sizes obtained from the numerical simulations from Section; 6k 1) = O(N/K?®/?). Then we obtain that the
transition time fromK to K — 1 jumps is

ATk =0 <%) . (7.26)

Consequently, the cumulative time until omtyjumps remain is given by the summation

K K
N
_ N —4 _
Ty = k§_N ATy ~ O(N) kE—Nk =0 < 3> , (7.27)

where the second summation can be expressed exactly in terms of the polygamma functio} J&} 4s=
W) — @ (K +1))/6 ~ K—3/3+ O(N~3, K~%). This result agrees with the estimate= O((N/1)Y/3)
from Eq. (6.3)). Itis not clear how to derive the scaling resultdfpiTx 1) from Eq. (7.22) or Eq. (7.20).

In conclusion, we have shown that in the continuum limit, the slow timescale for evolution in Eq. (2.25) diverges
as the microscopic discretization lengthscale vanishes= N~1 — 0. This singular behavior is a consequence
of the asymptotic form of the nonmonotone flux functidi(s) for s — oo. Further work focusing on the influence
of different forms of the flux functior¥ (s) is being pursued.
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