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The modeling of the motion of a contact line, the triple point at which solid, liquid and

air meet, is a major outstanding problem in the fluid mechanics of thin films [2, 9]. In this

paper, we compare two well-known models in the specific context of Marangoni driven films.

The precursor model replaces the contact line by a sharp transition between the bulk fluid

and a thin layer of fluid, effectively pre-wetting the solid; the Navier slip model replaces the

usual no-slip boundary condition by a singular slip condition that is effective only very near

the contact line. We restrict attention to traveling wave solutions of the thin film PDE for

a film driven up an inclined planar solid surface by a thermally induced surface tension

gradient. This involves analyzing third order ODE that depend on several parameters. The

two models considered here have subtle differences in their description, requiring a careful

treatment when comparing traveling waves and effective contact angles. Numerical results

exhibit broad agreement between the two models, but the closest comparison can be done

only for a rather restricted range of parameters. The driven film context gives contact angle

results quite different from the case of a film moving under the action of gravity alone. The

numerical technique for exploring phase portraits for the third order ODE is also used to

tabulate the kinetic relation and nucleation condition, information that can be used with the

underlying hyperbolic conservation law to explain the rich combination of wave structures

observed in simulations of the PDE and in experiments [3, 15].

1 Introduction

In attempting to resolve the well-known stress singularity [8] at a moving contact line,

the leading edge of a liquid spreading over a dry solid surface, two strategies are often

proposed. One strategy is to introduce a very thin precursor layer of fluid, which is

assumed to move hydrodynamically with the bulk fluid behind the contact line. In such

a precursor model, the contact slope can be associated with the steepest part of the free

boundary, i.e., the liquid-air interface, which of course does not come into contact with

the solid surface. In the second type of model, the free surface is assumed to achieve

contact with the solid surface, but a boundary condition between the fluid and the solid

surface permits a small amount of slip of the fluid on the solid, in contrast with the usual

no-slip boundary condition. Such a boundary condition was introduced by Navier [19]

at the start of a debate concerning suitable liquid-solid boundary conditions [10], leading
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eventually to the conclusion that the no-slip boundary condition is realistic for a viscous

fluid. The Navier slip condition was taken up much later in the context of contact lines

[13]; we use the so-called singular slip of Greenspan [11] to formulate the Navier slip

model.

In this paper, we explore the connections between these two models by doing numerical

experiments. Specifically, we simulate traveling wave solutions of equations obtained from

the lubrication approximation to the Navier-Stokes equations. We compare contact slopes

for the two models, and their dependence upon parameters such as the upstream film

height and the precursor height. We restrict attention to a thin film being driven up a solid

flat surface by a gradient in surface tension. The surface tension gradient is induced in

experiments by a temperature gradient [7, 22], thereby creating a Marangoni surface stress

that provides the driving force. In the absence of Marangoni force, a similar study was

undertaken by Tuck & Schwartz [20]. In our case, with Marangoni force, we find different

behavior, some of which was observed in Buckingham et al. [6]. Specifically, preliminary

results in Buckingham et al. [6] indicated a bounded interval of contact slopes for specific

choices of parameters. In this paper, we explore systematically the dependence of the

interval of slopes on the parameters.

The thin film, or lubrication, approximation of Stokes flow leads to a single PDE for

the height h as a function of position (x, y) on the flat surface, and time t [7]. Neglecting

variation in the transverse direction, so that h = h(x, t), the thin film PDE is of the form

(cf. Bertozzi et al. [3]):

ht + f(h)x = −(C(h)hxxx)x, (1.1)

in which f and C are smooth functions that are positive for h > 0; they incorporate

effects of gravity, surface tension and the Marangoni force. (We have also dropped second

order diffusive terms from (1.1) as they are small [18].) We seek traveling wave solutions,

h(x, t) = h̃(x − st) of (1.1), in which s is the speed of the traveling wave. By substitution

into the PDE (1.1) and one integration, we arrive at a third order ODE for h(ξ) (dropping

the tilde), where ξ = x − st :

h′′′ =
sh − f(h) − shm + f(hm)

C(h)
, (1.2)

in which ′ = d
dξ
, hm > 0 is the upstream height, and s is the wave speed. The computer

program we use to understand the structure of solutions of equation (1.2) is modeled on

that employed by Buckingham et al. [6]. The new code enables us to explore stable and

unstable manifolds of the vector field associated with (1.2) with much greater efficiency

than earlier procedures, simply by automating much of the selection of parameters. We

use the program not only to compare the two models, but also to compute traveling wave

information corresponding to a kinetic relation and nucleation condition postulated in

LeFloch & Shearer [15] for the underlying scalar conservation law

ht + f(h)x = 0. (1.3)
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2 The ODE models

2.1 The Navier Slip model

For the Navier slip model, we adopt the singular slip form of Greenspan [11], which

states that at the fluid-solid interface, the fluid velocity u parallel to the interface should

be proportional to the strain rate in the fluid, with a coefficient that depends on the height

of the film but which blows up at the contact line. Specifically,

u = ηhn−2 ∂u

∂z
on z = 0.

Here, 0 < n � 2 is an empirical parameter; we take n = 1, as suggested in Greenspan [11];

The value n = 2 is considered by Hocking [12] and others. The parameter η > 0 is

generally taken to be very small; ηhn−2 has the dimension of length; consequently, for

n = 1, η has the dimension of (length)2; the length scale for the slip is taken to be at least

an order of magnitude smaller than the maximum thickness of the film.

The functions C and f of (1.2) take the form (after nondimensionalization as in Bertozzi

et al. [3]):

C(h) = h3 + βh, f(h) = h2 − h3 +
2

3
β − βh, (2.1)

where β > 0 is a small parameter related to η. Since the fluid surface makes contact with

the solid surface, the height becomes zero at some point, which we can take to be the

origin. Correspondingly, we impose the boundary conditions

h(−∞) = lim
ξ→−∞

= hm, h(0) = 0

on traveling waves. Conservation of mass relates the wave speed s to the upstream height

alone, since this speed is also the speed of the contact line, and hence is the (depth

averaged) velocity of the fluid parallel to the solid surface:

s =
f(hm)

hm
. (2.2)

Consequently, the terms −shm + f(hm) in (1.2) are zero for the Navier slip model.

2.2 The precursor model

In the precursor model, we impose the no-slip boundary condition between the fluid and

solid surface, corresponding to β = 0 in (2.1). Thus, the functions in (2.1) simplify to

C(h) = h3, f(h) = h2 − h3. (2.3)

Moreover, the fluid surface does not make contact with the solid surface, so the height

remains positive. Correspondingly, we impose boundary conditions

h(−∞) = lim
ξ→−∞

= hm, h(∞) = lim
ξ→∞

= hb,
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Table 1. Model specifications

Navier Slip Precursor

Slip parameter β > 0 β = 0

Boundary conditions h(−∞) = hm, h(0) = 0 h(−∞) = hm, h(∞) = hb
Wave speed s = f(hm)

hm
s = f(hm)−f(hb)

hm−hb

Flux function f(h) = h2 − h3 + 2
3
β − βh f(h) = h2 − h3

where hb < hm is the precursor height. Conservation of mass relates the wave speed s to

both the upstream and downstream heights:

s =
f(hm) − f(hb)

hm − hb
. (2.4)

2.3 Comparison

The two models differ in their significant parameters (see Table 1). In the Navier slip

model, the parameters are hm and β, whereas in the precursor model, there are also two

parameters, hm and hb. However, the boundary condition h(0) = 0 from the Navier slip

model is at a singular point for the ODE; correspondingly, there is an additional degree

of freedom in the ODE solutions for the Navier slip model compared with the precursor

model. To compare film profiles for the two models, we later use the technique proposed

by Tuck & Schwartz [20], in which a profile with Navier slip corresponds to one with a

given precursor height if the maximum heights in the two profiles agree.

2.4 Equilibria

In this section, we consider equation (1.2) as a first order system. Equation (1.2) is

h′′′ = g(h), where g(h) =
sh − f(h) − shm + f(hm)

h3 + βh
, (2.5)

which is equivalent to the first order system

h′ = u

u′ = v (2.6)

v′ = g(h).

Equilibria of the system are of the form (h, u, v) = (h̄, 0, 0) with g(h̄) = 0, i.e.

s(h̄ − hm) = f(h̄) − f(hm). (2.7)

For fixed hm and s, this equation is represented graphically in Figure 1 as the intersection

of a straight line with slope s and the graph of the flux function f(h). For the Navier slip

model, the flux function f(h) = h2 − h3 + 2
3
β − βh intersects the y-axis at 2

3
β, and the h

axis at h = 1 − 1
3
β +O(β2). Equation (2.2) implies the line with slope s passes through the

origin. In the precursor model, the graph of the flux function intersects the origin and the
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Figure 1. Flux functions, line with slope s and equilibria. Navier slip (β = 0.01 shown);

Precursor model (β = 0).

line with slope s does not, due to (2.4). The line can intersect the flux function as many

as three times leading to three equilibria we label from the left B (bottom), M (middle)

and T (top).

Let h̄ satisfy (2.7). Linearizing (2.5) about h = h̄, we obtain

w′′′ = d(h̄)w, d(h̄) =
dg

dh
(h̄).

The characteristic equation λ3 = d(h̄) has three solutions, a complex conjugate pair

λ± = α ± iγ and a real solution λR = (d(h̄))
1
3 . The three eigenvalues are spread evenly

around the circle with radius |λR | in the complex plane. Since

g′(h̄) =
s − f′(h̄)

h̄3 + βh̄

at an equilibrium, we read off from Figure 1 that g′(h̄) > 0 at B and T, while g′(h̄) < 0 at

M. Consequently, B and T have one-dimensional unstable manifolds WU(B), WU(T ) and

two-dimensional stable manifolds WS (B), WS (T ). Similarly, M has a two-dimensional

unstable manifold WU(M) and one-dimensional stable manifold WS (M).

Remark

In the Navier slip model, we consider trajectories that connect to h = 0. These are

trajectories originating at the middle equilibrium M rather than at B or T; while there

may be trajectories from these other equilibria, they are less significant for our purpose,

as there are fewer such trajectories: the unstable manifolds from B and T are one-

dimensional, whereas the unstable manifold from M is two-dimensional. A consequence

is that even for the Navier slip model we consider parameter values for which there are

three equilibria.

To capture the two-dimensional invariant manifold of an equilibrium (h̄, 0, 0), we set

initial conditions on the tangent plane at (h̄, 0, 0). The tangent plane is generated by

solutions of the linear system

ĥ′ = û

û′ = v̂

v̂′ = d(h̄)ĥ
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Figure 2. Choosing initial data on the invariant manifold.

corresponding to the complex conjugate eigenvalues λ± = α ± iγ. Thus,




ĥ

û

v̂


 (ξ) = aeαξ(cos γξ v1 − sin γξ v2) (2.8)

where

v1 =




1

α

α2 − γ2


 and v2 =




0

α

2αγ




generate the tangent plane.

Consider the unstable case, in which α > 0. In choosing initial data for the ODE

simulation, we take a radial line in the tangent plane, i.e. a straight line emanating from

the equilibrium, and limit initial points to points on the line between successive crossings

of a single trajectory spiraling out from or into the equilibrium. From (2.8), successive

crossings occur at times differing by 2π
γ
; correspondingly

(ĥ, û, v̂)(ξ + 2π/γ) = e
2πα
γ (ĥ, û, v̂)(ξ).

Thus, if we select one point P0 in the tangent plane, we capture all trajectories in the

two-dimensional manifold by selecting initial data on the line between (h̄, 0, 0) + P0 and

(h̄, 0, 0) + e
2πα
γ P0. (See Figure 2, in which the equilibrium is labeled h̄, and the two points

are labeled h̄+ P0, h̄+ P1.) Note that γ/α = tan π
3
, so that e

2πα
γ ≈ 37.6223. To select P0, we

can choose a and ξ in (2.8). Without loss of generality, we choose ξ = 0. However, for

accuracy, we need to choose P0 close to the origin, so a = a0 is chosen to be small.

To summarize, we initiate ODE simulations at ξ = 0, with



h

u

v


 (0) =




h̄

0

0


 + a




1

α

α2 − γ2


 . (2.9)

Here, the parameter a is chosen in an interval [a0, a0e
2πα
γ ), to capture all trajectories in

the two-dimensional invariant manifold. In practice, the choice of a is crucial, and for

greater resolution, or to focus on one part of the solution set, we often take only a small

subinterval of values of a. This adjusting of a is particularly needed in computing the
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stable manifold of B when hb is very small, since then the system is very sensitive to

changes in h.

2.5 Parameter ranges for equilibria

For both the precursor and Navier slip models, we consider parameter values for which

there are three equilibria. This places restrictions on the parameters, which we describe

in two lemmas. In the Navier Slip model, there is a limited range of β for which there

are three equilibria. Recall that equilibria (h̄, 0, 0) occur at intersections between the flux

function, f(h) and the line with slope s = f(hm)/hm through the origin. The limits of the

parameters will occur when the chord is tangent to the flux function, i.e.

f(h) = f′(h)h.

From f(h) = h2 − h3 + 2
3
β − βh, this equation becomes

h3 − 1

2
h2 +

1

3
β = 0. (2.10)

The three roots have product −β
3

< 0, so that when they are all real, two are positive

and one is negative. The two positive roots coalesce when the minimum of the cubic (at

h = 1
3
) is a root; this occurs precisely when β = 1

18
(from setting h = 1

3
in (2.10)). There is

also a maximum at h = 0, at which the negative root coincides with a positive root, for

β = 0. Thus, the range for β is

0 < β <
1

18
.

Now let hmin(β) < hmax(β) be positive roots of equation (2.10). Then hm is constrained by

hmin(β) < hm < hmax(β). (2.11)

We summarize the result as a lemma.

Lemma 2.1 Let hmin(β) < hmax(β) be positive roots of (2.10). Then there are three equilibria

0 < hb < hm < ht for the Navier slip model (2.4) if and only if 0 < β < 1
18

; consequently,

hmin(β) < hm < hmax(β).

Finally, note that for the Navier slip model, the wave speed s depends only on hm:

s = f(hm)
hm

.

For the precursor model (β = 0), the precursor height hb is constrained by 0 < hb <
1
3
.

Here, we want three roots of the equation

f(h) − f(hb) = s(h − hb), (2.12)

but we also want hb to be the smallest root. Limits on s occur when s is the slope of the

tangent to the graph of s at an equilibrium, either at hb (for the minimum value of s) or

at a larger equilibrium. Thus smin = f′(hb) = 2hb − 3h2
b, and s = smax is given by (2.12),

together with

s = f′(h) = 2h − 3h2. (2.13)
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Equation (2.12) becomes, after dividing by h − hb � 0,

s = −
(
h2 + hhb + h2

b

)
+ h + hb. (2.14)

Solving (2.13), (2.14), we find s = smin and h = hb, or s = smax = 1
4

+ 1
2
hb − 3

4
h2
b and

h = 1/2(1 − hb). Thus the constraints on s and hm are specified in the following lemma.

Lemma 2.2 For the precursor model ((2.5) with β = 0), there are three equilibria 0 < hb <

hm < ht if and only if 2hb −3h2
b < s < 1

4
+ 1

2
hb − 3

4
h2
b, hb < hm < 1/2(1−hb), and 0 < hb <

1
3
.

Remark

For the Navier slip model, we trace trajectories in WU(M), and measure the most negative

slope of those that go to h = 0 at a finite value of ξ. As we will see in the following

section, these trajectories require that WU(M) and WS (B) intersect. As hm is increased,

these manifolds eventually separate at hm = h∗(β) < hmax(β).1 Thus, we find trajectories

for hm in a range even more restricted than calculated in (2.11):

hmin(β) < hm < h∗(β). (2.15)

In the precursor model, we want trajectories that lie in both WU(M) and WS (B), i.e.

trajectories (in WU(M) ∩ WS (B)) that are heteroclinic orbits from M to B. Again, the

parameter ranges are more limited than those of Lemma 2.2 due to the eventual separation

of WU(M) and WS (B).

3 Numerical experiments

The overall goal of the numerical experiments is to determine the effective contact slope

for each of the two models, and to determine the effect of varying parameters such as

hb, hm and β. The effective contact slope is measured as the most negative value of h′ for

a single trajectory.

To compute trajectories, we used the implicit Adams method in LSODE, the Livermore

Stiff ODE solver [21]. This solver is implemented with variable step size and variable

order (first to twelfth).

Initial conditions (2.9) are numbered by an index j: a = j ∗ δ and jstart � j � jstarte
2πα
γ ,

in which δ is the spacing between initial points, numbered by j. The two parameters δ

and jstart are used to refine calculations where needed. The two-dimensional manifolds

WU(M),WS (B) are visualized by computing their intersections with a Poincaré section,

h = (2hm +hb)/3 (as in Bertozzi et al. [3]), so that each manifold is represented by a curve.

To calculate Poincaré sections, we use 1000 � j � 37623, and δ = 10−10. When refinement

is needed in this process we take δ = 10−11. Note that to calculate WS (B) we integrate

backwards in ξ.

Parameter choices for comparison of the two models, extending the range in

Buckingham et al. [6], are shown in Table 2. The remaining parameter, namely the

wave speed s, is calculated according to the formulae in Table 1. The values of hb in

1 The function h∗(β) has to be calculated numerically.
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Table 2. Parameter specifications

hm 0.26, 0.28, 0.30, 0.32

Navier slip model: β 0.007, 0.01, 0.013

Precursor model (β = 0): hb 0.03, 0.033, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06
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Figure 3. Macroscopic View of Poincaré section. β = 0.013, hm = 0.26.
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Figure 4. Poincaré sections for the precursor model: hb = 0.01, 0.023, 0.033; hm = 0.26.

the precursor model are chosen to be small enough to be in a realistic range; although

smaller values would be desirable, simulations become unreliable at very small values

of h.

3.1 Phase portraits and the Poincaré section

Since the ODEs for the two models have a similar structure, it is not surprising that

their phase portraits are qualitatively similar. In Figure 3, we show a Poincaré section for

the Navier slip model on a scale that illustrates the general structure of the manifolds

WU(M),WS (B). (The gaps around h′ = 0 correspond to the manifolds becoming tangent

to the plane h = constant; they can be made smaller by refining the initial data.) In

Figure 4, we show intersections in the Poincaré section between WU(M) and WS (B) on

a larger scale, as hb varies from 0.01 to 0.033 in the precursor model. As hb increases,

we observe the line of dots representing trajectories in WS (B) pull through the spiral of
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Figure 5. Effect of δ on precursor length. hb = 0.07.
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Figure 6. Single trajectories labeled on the Poincaré section. β = 0.013, hm = 0.26.

WU(M), with varying numbers of intersections. Note that the smaller values of hb fall

outside the range for comparison of the two models given in Table 2. Specifically, for

hb = 0.01, there are no trajectories from M to B so we cannot calculate contact slopes for

comparison with the Navier slip model. The values of hm and hb in Figure 4 were chosen

to clarify the behavior of the Poincaré sections.

For the precursor model, intersections of the manifolds correspond to the relevant

trajectories; they are heteroclinic orbits from M to B. A typical profile for such a trajectory

is shown in Figure 5. (In this figure, we show only the portion near the contact line; for

smaller ξ, the profile simply approaches the upstream height.) In the analytic solution, the

precursor has infinite length. This could be achieved numerically by integrating backwards

from B and forwards from M. To generate the figure, we chose two points on WU(M)

close to WS (B), and superimposed the profiles to show how the precursor length increases

slowly as the points are chosen closer to the intersection.

For the Navier slip model however, we seek trajectories from M to h = 0. We say

such trajectories touch down. They are represented in the Poincaré section by portions

of WU(M) to the left of WS (B) in Figure 6. In Figure 7 we show individual trajectories

(again focussing in on variations in the film shape near the contact line) for points
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Figure 7. Navier slip model: single trajectories. β = 0.013, hm = 0.26.

A,B,C, and D shown on WU(M) in Figure 6 to illustrate a variety of profile shapes. In

Figure 7A, the trajectory corresponds to a point in WU(M) on the wrong side of WS (B);

consequently, h → ∞. The three trajectories in Figure 7 B,C,D are taken from points

around the arc of WU(M) on the side of WS (B) corresponding to trajectories that touch

down. The profile in Figure 7B shows a small oscillation as h approaches zero. In the

three-dimensional phase portrait, the corresponding trajectory approaches the equilibrium

at B, and undergoes a rotation about the one-dimensional unstable manifold from B.

Note that the point labeled B in Figure 7 is close to WS (B). The profile in Figure 7C

does not have this oscillation near h = hb, but instead has a plateau around h = ht. In

the phase portrait, the corresponding trajectory approaches the equilibrium at T, and has

a small rotation around the one-dimensional unstable manifold from T before decreasing

monotonically to h = 0. Between these two extremes, we show a trajectory in 7D that has

neither of the features of Figures B and C. In Figures B and D, there is a well-defined

capillary ridge2 where h reaches its maximum. In Figure C, there is a much broader and

taller capillary ridge.

3.2 Contact slopes

We wish to compare the two models by investigating how well they represent the contact

angle, the angle the fluid surface makes with the solid surface at the contact line. Both

models present difficulties in this regard. The precursor model is formulated specifically

2 The capillary ridge is a commonly observed feature in experiments on driven thin liquid films

(cf. Cazabat et al. [7]).
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Figure 8. Effective contact slope c vs. hb. Precursor model, hm = 0.30.

to avoid having a contact line. In this case, the contact angle should be what is observed

experimentally, assuming a small precursor height. By considering only traveling waves, we

are not able to consider arbitrarily small precursor layers, as explained above. Moreover,

the observed contact angle, associated with the steepest slope of the profile, depends on

the precursor height, as shown in Figure 8. In this figure, we show the steepest slope for

all trajectories (up to three for the level of accuracy of the calculations) corresponding to

intersections of WU(M) with WS (B), for a range of precursor heights hb. Observe that

the (negative) slopes fall into an interval that is bounded below3. The lower bound is

achieved at a value of hb for which WU(M) and WS (B) have tangential intersection; for

smaller values of hb, these manifolds do not intersect. This signals the splitting of a wave

into a two-wave solution of the PDE. In § 4, we relate this transition to the nucleation

condition formulated in LeFloch and Shearer [15].

For the Navier slip model, there is a contact line, where h = 0. However, as illustrated

in Figure 7B, it may not be appropriate to measure the slope h′ precisely at this point.

The effective contact slope is the most negative slope beyond the capillary ridge. For this

model, for each choice of β > 0, there are infinitely many trajectories, each with its own

effective contact slope c. The slopes as a function of location on WU(M), indexed by j,

are shown in Figure 9 for β = 0.013. As for the precursor model, the contact slopes fall

into an interval, but in this case the interval has well-defined upper and lower bounds. In

Figure 10, we plot effective contact slope against h′(0). It is striking how different this plot

is from the corresponding monotonic curves of Tuck & Schwartz [20], in the absence of

Marangoni force, where h′(0) approaches zero at one end, and is apparently unbounded

at the other end. Moreover, the effective contact slope and h′(0) approach each other

in Tuck & Schwartz [20], whereas here there is apparently no range in which the two

measures of contact slope agree.

We first compare the models by comparing the ranges (i.e. intervals) of these slopes,

rather than the individual values. In Figure 11, the intervals are represented by symbols

3 The interval is also bounded above (by zero), but slopes closer to zero than those shown in

Figure 8 are achieved only by taking physically unrealistic precursor heights.
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Figure 11. Ranges of contact slope, β � 0.
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showing their upper and lower limits, for a variety of values of upstream height hm
and slip parameter β > 0. We also indicate, with a dashed line, the range of contact

slopes for the precursor model (β = 0). The range of contact slopes c (a typical plot is

Figure 9) was calculated for each choice of model parameters with δ = 10−10. To check

the accuracy of the upper and lower limits of this range recorded in Figure 11, refinement

using δ = 10−11 was performed near these limits. The conclusion of this refinement is that

the limiting values of c are accurate to four decimal places for both models. Note that

on the right hand side of the figure, we lose a data point in the Navier slip model for

hm = 0.32 and β = 0.007 since WS (B) and WU(M) do not intersect, even though (2.11)

holds.

If we consider only the most negative slopes in the Navier slip model, they are relatively

independent of β, and monotonically increasing with hm. For the precursor model, the

most negative slopes are generally smaller (less negative) than those of the Navier slip

model, and they are not monotonic in hm. On the other hand, if we consider the least

negative slopes (represented by the upper symbols in Figure 11), those for the Navier slip

model are not monotonic, but are decreasing for larger hm. The least negative slopes for

the precursor model are comparable to those of the Navier slip model; however they are

achieved at larger hb (see Figure 8).

To further compare the two models, we need to identify specific points in the intervals

shown in Figure 11. To do so, we compare contact slopes for like profiles, meaning those

with the same global maximum of h, as in Tuck & Schwartz [20]. First, we fix a specific

profile h0(ξ) for the precursor model, with chosen upstream and precursor heights hm
and hb, respectively. For fixed β � 0 (the Navier slip model), there is a one-parameter

family of profiles with the same upstream height, and we select the profile that matches

the maximum height maxξ h0(ξ) of the precursor profile. We can then compare maximum

slopes for the two profiles. As pointed out in Tuck & Schwartz [20], this procedure

requires careful selection of β. Below a minimum β, all profiles have maximum height

greater than that of h0. Accordingly, we select h0(ξ) using Figures 8 and 11 as follows,

in order to get a reasonable range for β. From Figure 11 we observe that hm = 0.28 and

hm = 0.3 both have all four contact slope intervals overlapping; we choose hm = 0.3 in

order to provide a bigger challenge for the comparison – the interval of overlap is quite

small. To provide a precursor profile for comparison, we choose a value min h′ = −0.47 in

the center of this interval of overlap, and then find the corresponding value hb = 0.037 of

the precursor height (from Figure 8) at which the maximum slope is approximately this

value. For hm = 0.3, hb = 0.037 and β = 0 we found two intersections between WU(M)

and WS (B), and a single trajectory corresponding to each intersection. We calculated

the global maximum for each of the two trajectories and then sought corresponding

trajectories with matching global maximum, for the same fixed hm = 0.3, and the varying

β = 0.007, 0.01, 0.013. Figure 12 shows these plots superimposed. Note that there is some

variation in the maximum slope as β varies, but that this variation is very small. The

difference between the contact slope for the β = 0 case (for either intersection) differs

from the maximum contact slope for the β � 0 cases from approximately 1–6% of the

contact slope for the β = 0 case. At a macroscopic level, there is very good agreement

between the profiles. The lateral separation of the trajectories is less than one percent of

the distance between the global minimum and maximum of the trajectories. Zooming in
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Figure 12. Comparison of profiles for two intersections of WU(M),WS (B), hb = 0.037.

on these differences in Figure 12, we can again see good agreement, and observe that the

difference is not monotonic in β, suggesting that the contact slopes may not be as well.

4 The kinetic relation and nucleation condition

In this section, we describe another use of the calculation of invariant manifolds of the

third order ODE in the precursor model. Some of the phenomena observed in experiments

and in simulations of the PDE (1.1) can be explained from a theory of hyperbolic

wave solutions of the underlying scalar conservation law, as explained in LeFloch &

Shearer [15]. This theory encapsulates information from the traveling wave problem in

two functions of the precursor height, namely the kinetic function which we label hK (hb),

and the nucleation function hN(hb). The kinetic function4 specifies the value ht = hK (hb)

for which there is an undercompressive shock joining the upstream height ht to the

precursor with height hb. The nucleation function plays the role of determining the value

of upstream height at which undercompressive waves are forced to appear, i.e. nucleate.

These two functions are left unspecified in the general hyperbolic theory of LeFloch

& Shearer [15]). Here, we capture graphs of the two functions by considering traveling

wave solutions of (1.1). For a given hb < 1/3, we find the value ht = hK (hb) for which

there is an undercompressive traveling wave, i.e. an orbit joining the equilibrium T to the

equilibrium B. This occurs when the unstable manifold from T lies on the stable manifold

of B, a criterion we can easily determine in the Poincaré section by finding the value of

the upstream height hm for which WU(B) intersects the spiral-shaped WU(M) through its

center (see Figure 13A). Similarly, as the manifold WU(M) detaches from the manifold

WS (B), corresponding to the smallest value of hm for which there are no orbits from M to

B, we conclude that the PDE must revert to a two-wave structure, thereby nucleating an

undercompressive wave. The nucleation function is then the value hm = hN(hb) at which

this occurs (see Figure 13B).

4 The kinetic function is the subject of an extensive theory of nonclassical weak solutions of

scalar conservation laws and systems [14].
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Figure 13. Poincaré Sections for A: Kinetic relation; B: Nucleation condition.
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Figure 14. Kinetic relation (left) and Nucleation condition (right).

In Figure 14, we show the results of these calculations for a range of values of hb. In

the figure, we plot numerical data for both the middle and top equilibria for the kinetic

relation and the nucleation condition.

5 Discussion

In this paper, we have explored the possibilities of comparing different slip models for

moving contact lines by analyzing traveling waves, in the very specific context of a thin

film driven up an inclined plane by a Marangoni force, against the action of gravity. This

setting gives rise to behavior of the contact line rather different from other cases in which

there is a single force, as noted in the earlier paper [6]. In the current paper, we have

compared the singular slip model with a range of parameters to the precursor model,

with a range of precursor thicknesses.

The techniques of this paper are comparable to those of the earlier studies [20] (in which

both precursor and Navier slip models were considered for gravity-driven films), and of

Buckingham et al. [6] (which is concerned solely with novel features of the Navier slip
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model with both gravity and Marangoni force). We find that the range of effective contact

slopes in both models is confined to an interval bounded away from zero. Moreover, the

precursor model breaks down in an unexpected way as the precursor height is decreased

for a given upstream height: below a critical precursor height, there are no traveling

waves from the upstream height to the precursor, even when both heights are equilibria

of the ODE. This is explained with the aid of Poincaré sections of the phase diagram of

the ODE.

It would be interesting to investigate the stability of the traveling waves. There are

some results for the precursor model [4], but for the Navier slip model, stability is harder

to formulate, as the traveling wave does not extend over the entire real line; it’s stability

would depend on setting a boundary condition at the contact line.

In agreement with the gravity driven case [20], we find excellent correspondence between

effective contact slopes for profiles with the same maximum height. However, such a

comparison severely limits the range of parameters, as a precursor model profile may

have no comparable profile for the slip model. A second, more understandable limitation

is that not all solutions of initial value problems converge to traveling waves. Indeed,

simulations of the thin film PDE [3] show clearly that for some choices of upstream and

precursor height, there is no traveling wave, and PDE solutions are forced to converge to

a solution that has two-wave structure. In this vein, it is possible to understand the two-

wave structure, and the disappearance of the traveling waves, through a careful analysis

of the traveling wave equation, leading to an example of kinetic relation and nucleation

condition. These encapsulate information about the surface-tension-driven flow that can

be used in the hyperbolic conservation law representing the limit of vanishing surface

tension. This issue is explored in more detail in the forthcoming paper [16].
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